
WEB FOR PENTESTER
By Louis Nyffenegger <Louis@PentesterLab.com>

2
6
7
7
7
8

11
11
11
12
12
13
13
14

15
15
16
17
17
21
23
25
26
27
28
28
28
30
31

Table of Content

Table of Content
Introduction
About this exercise

License
Syntax of this course
The web application

Introduction
Security model of the web
Web security risks
Web technologies

Architecture
Client side technologies
Server side technologies
Storage backend

The HTTP protocol
A Client-server dialog
Requests

Methods
Parameters
HTTP Headers

Responses
HTTPs
Listening to HTTP traffic
Generating HTTP traffic
Data encoding

Code vs. data
URL encoding
Double encoding
HTML encoding

2/106

PentesterLab.com » Web for Pentester

32
35
36
37
37
41
44

46
46
48
49
50
52
52
53
53
55

57
59
61
64
65
65
65
66
67
68
68
69
69
71
74
74
74

Cookies and sessions
HTTP authentication
Web services
Web application security

Client Side Security
Bypassing Client Side Checks
Server side

Fingerprinting
Fingerprinting the web server
Browsing the web site
Check for favicon.ico
Check the robots.txt file
Searching for directories and pages

Directory/Pages busting
Finding administration pages

Generating errors
Keep information

Building useful tools
Examples of Web vulnerabilities

Cross-Site Scripting (XSS)
Example 1
Example 2
Example 3
Example 4
Example 5
Example 6
Example 7
Example 8
Example 9

SQL injections
Example 1
Example 2
Example 3
Example 4

3/106

PentesterLab.com » Web for Pentester

76
76
77
78
79
80
81
82
83
83
84
86
87
88
89
92
93
94
95
95
95
96
97
97

100
101
101

102
102
104

106

Example 5
Example 6
Example 7
Example 8
Example 9

Directory traversal
Example 1
Example 2
Example 3

File include
Example 1
Example 2

Code injection
Example 1
Example 2
Example 3
Example 4

Command injection
Example 1
Example 2
Example 3

LDAP attacks
Example 1
Example 2

Upload
Example 1
Example 2

XML related attack
Example 1
Example 2

Conclusion

4/106

PentesterLab.com » Web for Pentester

5/106

PentesterLab.com » Web for Pentester

Introduction

This course details all you need to know to start doing web penetration testing.
PentesterLab tried to put together the basics of web testing and a summary of the
most common vulnerabilities with the LiveCD to test them.

6/106

PentesterLab.com » Web for Pentester

About this exercise

License

Web for Pentester by PentesterLab is licensed under the Creative Commons
Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/.

Syntax of this course
7/106

PentesterLab.com » Web for Pentester

https://www.pentesterlab.com/
http://creativecommons.org/licenses/by-nc-nd/3.0/

The red boxes provide information on mistakes/issues that are likely to happen
while testing:

An issue that you may encounter...An issue that you may encounter...

The green boxes provide tips and information if you want to go further.

You should probably check...You should probably check...

The blue boxes are "homework": things you can work on once you are done with
this exercise:

You should probably work on...You should probably work on...

The web application

Once the system has booted, you can then retrieve the current IP address of the
system using the command ifconfig:

8/106

PentesterLab.com » Web for Pentester

$ ifconfig eth0
eth0 Link encap:Ethernet HWaddr 52:54:00:12:34:56
 inet addr:10.0.2.15 Bcast:10.0.2.255 Mask:255.255.255.0
 inet6 addr: fe80::5054:ff:fe12:3456/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:88 errors:0 dropped:0 overruns:0 frame:0
 TX packets:77 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:10300 (10.0 KiB) TX bytes:10243 (10.0 KiB)
 Interrupt:11 Base address:0x8000

In this example the IP address is 10.0.2.15.

Throughout the training, the hostname vulnerable is used for the vulnerable
machine, you can either replace it by the IP address of the machine, or you can just
add an entry to your host file with this name and the corresponding IP address. It
can be easily done by modifying:

On Windows, your C:\Windows\System32\Drivers\etc\hosts file.

On Unix/Linux and Mac OS X, your /etc/hosts file.

The IP address can change if you restart the system, don'tThe IP address can change if you restart the system, don't
forget to update your hosts file.forget to update your hosts file.

Once you access the web application, you should see the following page:

9/106

PentesterLab.com » Web for Pentester

10/106

PentesterLab.com » Web for Pentester

Introduction

Web applications are probably the most common services exposed by companies
and institutions on the internet, furthermore, most old applications have now a "web
version" to be available in the browser. This massive transformation makes of web
security an important part of a network's security.

Security model of the web

The basis of the security model of the web is really simple: don't trust the client.
Most information a server will received can be spoofed by the client. Better be safe
than sorry, it's better to filter and escape everything than realising later on that a
value you thought was not user controlled is.

Web security risks
11/106

PentesterLab.com » Web for Pentester

web applications present all the risks of normal applications:

Compromise.

Information leak.

Reputational damage.

Information lost.

Money lost.

Web technologies

Architecture

Most web applications rely on 3 components:

The client: a web browser in most cases.

The web server that will receive requests from client. An application
server can be involved to process the requests, in that case the web
server will just forward the requests to the application server.

The storage backend to retrieve and save information: most
commonly a database.

12/106

PentesterLab.com » Web for Pentester

All these components may have different behaviours that will impact the existence
and exploitability of vulnerability. All these components can also present
vulnerabilities or security issues.

Client side technologies

Most of the client side technologies are used every day by most Internet users:
HTML, JavaScript, Flash... through their browsers (Chromium, Firefox, Internet
Explorer, Safari...). However, web applications' clients can also be a thick client
connecting to a web service or just a script.

Server side technologies

On the server side a lot of technologies can be used and even if all can be
vulnerable to any web issue, some issues are more likely to happen for a given
technology.

The server side can be divided in more sub-categories:

Web servers like Apache, lighttpd, Nginx, IIS...

Application servers like Tomcat, Jboss, Oracle Application server...

The programming language used: PHP, Java, Ruby, Python, ASP,
C#, ... This programming language can also be used as part of a
framework like Ruby-on-Rails, .Net MVC, Django.

13/106

PentesterLab.com » Web for Pentester

Storage backend

The storage backend can be located on the same server as the web server or on a
different one, that can explain weird behaviour during the exploitation of some
vulnerabilities.

Few backends exist:

Simple files.

Relational databases like Mysql, Oracle, SQL Server, PostgreSQL.

Other databases like MongoDB, CouchDB.

Directories like openLDAP or Active Directory.

An application can use more than one storage backend. For example, some
applications use LDAP to store users and their credentials and use Oracle to store
information.

14/106

PentesterLab.com » Web for Pentester

The HTTP protocol

HTTP is the base of the web, it's really important to have a deep understanding of
this protocol in order to perform web security testing. Knowing and understanding
HTTP specificities will often allow you to find vulnerabilities and exploit them.

A Client-server dialog

HTTP is a dialog between one client and one server. The client, the browser, sends
a request to the server, and then the server responds to this request. HTTP has the
advantages of being a text protocol and therefore really easy to read, understand
and learn for a human being. By default, most web servers are available on port
TCP/80. When your browser connects to a URL http://pentesterlab.com/, it's in fact
doing a TCP connection to the port 80 of the IP corresponding to the name
pentesterlab.com.

15/106

PentesterLab.com » Web for Pentester

http://pentesterlab.com
http://pentesterlab.com/

The most common request occurs when a browser ask the server for content. The
browser sends a request composed of the following elements:

An HTTP method that will allow the server to understand what kind of
operation the browser wants to realise.

A resource that corresponds to what the client try to access on the
server.

A version that will allow the server to know what version of HTTP the
browser is talking.

Optionnaly, various headers giving more information to the server
like the browser's name and version, the preferred language of the user
(like in English, German, French,...), ...

Depending on the HTTP method used, a request body.

As an example, a request to the URL http://vulnerable/index.php will correspond to
the following HTTP request:

GET /index.php HTTP/1.1
Host: vulnerable
User-Agent: Mozilla Firefox

Requests

16/106

PentesterLab.com » Web for Pentester

http://vulnerable/index.php

Methods

Many HTTP methods exist:

The GET method: to request for content, it's the most common
request sent by browsers;

The POST method: POST is used to send larger amount of data, it's
used by most forms and also for file upload.

The HEAD method: the HEAD method is very similar to the GET
request, the only difference is in the response provided by the server,
the response will only contains the headers and no body. HEAD is
massively used by web spiders to check if a web page has been
updated without downloading the full page content.

There are many other HTTP methods: PUT, DELETE, PATCH, TRACE, OPTIONS,
CONNECT... You can read more about them on the Wikipedia page.

Parameters

Another important part of the request is the parameters, when a client accessed the
following page http://vulnerable/article.php?id=1&name=2, the following request is
sent to the web server:

17/106

PentesterLab.com » Web for Pentester

http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods
http://vulnerable/article.php?id=1&name=2

POST requests are really similar, but instead the parameters are sent in the request
body. For example, the following form:

<html>
 [...]
 <body>
 <form action="/login.php" method="POST">
 Username: <input type="text" name="username"/>

 Password: <input type="password" name="password"/>

 <input type="submit" value="Submit">
 </form>
 </body>
</html>

This HTML code corresponds to the following login form:

Once the form is filled with the following values:

18/106

PentesterLab.com » Web for Pentester

username equals 'admin',

password equals 'Password123'.

And after it gets submitted, the following request is sent to the server:

POST /login.php HTTP/1.1
Host: vulnerable
User-Agent: Mozilla Firefox
Content-Length: 35

username=admin&password=Password123

NB: if the method GET was used in the <form tag, the values provided will be sent as
part of the URL and look like:

GET /login.php?username=admin&password=Password123 HTTP/1.1
Host: vulnerable
User-Agent: Mozilla Firefox

If the form tag contains an attribute enctype="multipart/form-data", the request
sent will be different:

19/106

PentesterLab.com » Web for Pentester

POST /upload/example1.php HTTP/1.1
Host: vulnerable
Content-Length: 305
User-Agent: Mozilla/5.0 [...] AppleWebKit
Content-Type: multipart/form-data; boundary=----
WebKitFormBoundaryfLW6oGspQZKVxZjA

------WebKitFormBoundaryfLW6oGspQZKVxZjA
Content-Disposition: form-data; name="image"; filename="myfile.html"
Content-Type: text/html

My file

------WebKitFormBoundaryfLW6oGspQZKVxZjA
Content-Disposition: form-data; name="send"

Send file
------WebKitFormBoundaryfLW6oGspQZKVxZjA--

We can see that there is a different Content-type header: Content-Type:
multipart/form-data; boundary=----WebKitFormBoundaryfLW6oGspQZKVxZjA. The
Webkit comes from Webkit based browser, other browsers will use a long random
string instead. This string is repeated for every part of the multipart information. The
last part contains the string followed by --.

When you upload a file, this is what the browser uses. In the multi-part section
dedicated to the file, you will see the following information:

20/106

PentesterLab.com » Web for Pentester

The file name: myfile.html.

The parameter name: image.

The file content type: text/html.

The file content: My file.

It's also possible to send parameters as an array (or hash depending on the parsing
performed on the server side). You can for example use: /index.php?id[1]=0 to
encode an array containing the value 0.

This method of encoding is often used by frameworks to perform automatic request
to object mapping. For example, the following request:
user[name]=louis&user[group]=1 will be mapped to an object User with the
attribute name equals to louis and the attribute group mapped to 1. This automatic
mapping can sometimes be exploited using attacks named mass-assignment: by
sending additional parameters, you can, if the application does not protect against
it, change attributes in the receiving object. In our previous example, you could for
example add user[admin]=1 to the request and see if your user gets administrator
privileges.

HTTP Headers

21/106

PentesterLab.com » Web for Pentester

As we saw, HTTP requests contain a lot of HTTP Headers. You can obviously
manipulate all of them but if you provide incorrect values the request is likely to be
rejected or the header won't be used.

Furthermore, most applications only use few HTTP headers:

Referer: to know where the clients come from;

Cookie: to retrieve the cookies;

User-Agent: to know what browser users use;

X-Forwarded-For: to get the source IP address (even if it's not the
best method to do this).

Other HTTP headers are mostly used by the web server, you can also find security
vulnerabilities in their handling. However, you are less likely to find a bug in a web
server than in a web application.

One of the most important headers is Host, it's mainly used by the web server to
know what web site you are trying to access. When more than one website is
hosted on the same server, web server used this header to do virtual-hosting: even
if you are always connecting to the same IP address, the server reads the Host
information and serves the right content based on this. If you put the IP address in
the Host header or an invalid hostname, you can sometimes get another website
and get extra-information from this.

22/106

PentesterLab.com » Web for Pentester

Responses

When you send a request, the server will respond back with an HTTP response. For
example, the following response could be sent back:

HTTP/1.1 200 OK
Date: Sun, 03 Mar 2013 10:56:20 GMT
Server: Apache/2.2.16 (Debian)
X-Powered-By: PHP/5.3.3-7+squeeze14
Content-Length: 6988
Content-Type: text/html

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>PentesterLab » Web for Pentester</title>
 <meta name="viewport" content="width=device-width, initial-
scale=1.0">
 <meta name="description" content="Web For Pentester">
 <meta name="author" content="Louis Nyffenegger
louis@pentesterlab.com">
[...]

23/106

PentesterLab.com » Web for Pentester

An important part of the response is the status code, it's followed by a reason and is
located in the first line of the response. It's used by clients to know how to handle
the response. The following status codes are the most common ones:

200 OK: the request was processed successfully.

302 Found: used to redirect users for example when they logout to
send them back to the login page.

401 Unauthorized: when the resource's access is restricted.

404 Not found: the resource requested by the client was not found.

500 Internal Server Error: an error occured during the processing
of the request.

Some of them are far less common like 418: I'm a teapot.

After the status code, you can see the HTTP headers.

HTTP headers contain a lot of information and will influence how the browser will
handle the request and interpret its content. In the response above, we can see the
following information:

The date.

The Server header that gives a lot of information on what the remote
web server is.

24/106

PentesterLab.com » Web for Pentester

The X-Powered-By header that gives even more information.

The Content-Length header to tell the browser how big the response
will be.

The Content-Type header to tell the browser what to expect. This
header will change the browser behaviour, if the header is text/html,
the browser will try to render the response. If it's text/plain, it
shouldn't try to render it.

The content is the information sent back, it can be an HTML page, some images,
everything basically. When your browser retrieves a HTML page, it will parse it and
retrieve each of the resources automatically:

JavaScript files.

CSS files.

Images.

...

HTTPs

HTTPs is just HTTP done on top of a Secure Socket Layer (SSL). The SSL part
ensures the client that:

25/106

PentesterLab.com » Web for Pentester

He's talking to the right server: authentication;

The communication is secure: encryption.

Multiple versions of SSL exist with some of them considered weak (SSLv1 and
SSLv2).

SSL can also be used to ensure clients' identity. Client certificates can be used to
ensure that only people with valid certificates can connect to the server and send
requests. This is a great way to limit access to a service and is often used for
systems requiring a high security level (payment gateway, sensitive web service).
However, maintaining certificates (and revocation list) can be a pain for large
deployments.

Listening to HTTP traffic

There are 3 ways to listen to HTTP traffic:

By listening to the network directly with tools like Wireshark or
tcpdump.

In the browser, most browsers have an extension allowing a user to
see what traffic is transmitted and received.

By setting up a proxy between the browser and server.

26/106

PentesterLab.com » Web for Pentester

Each of these methods have advantages and disadvantages, we will see later that it
really depends on whether the communications are using Secure Socket Layer
(SSL) or not and on whether the user wants to be able to intercept/modify the
request or not.

Generating HTTP traffic

Generating HTTP traffic can be performed in different ways:

Since it's a text oriented protocol, you can just use a tool like telnet or
netcat and type your request.

Sending HTTP traffic can also be done using a programming
language, all of them can easily be used to write and read traffic from a
socket and communicate with the server. Furthermore, most languages
have an HTTP library allowing a programmer to easily build and send
requests and get the corresponding responses.

Finally, the easiest way to generate an HTTP request is to use a
browser.

Using a browser is obviously the easiest way to access a website. However, others
methods will allow you to have a better access to details and to craft any HTTP
requests.

Using telnet (or netcat) you can quickly send HTTP requests:
27/106

PentesterLab.com » Web for Pentester

$ telnet vulnerable 80
GET / HTTP/1.1
Host: vulnerable

[...]

You can also do the same thing using netcat:

$ echo "GET / HTTP/1.1\r\nHost: vulnerable\r\n\r\n" | nc vulnerable 80
[...]

Data encoding

Code vs. data

Most of security issues come from the fact that an attacker is able to put code
where the application expects data. Most of the web security issues like XSS or
SQL injections come from this, the application receives data but use this data as
code.

URL encoding

As we saw, some characters are used in HTTP to do the distinction between:

28/106

PentesterLab.com » Web for Pentester

Each request's lines: \r\n.

Each part of the HTTP request (like between the method and the
URI): space .

The path and the parameters: ?.

Each parameters: &;

a parameter name and the corresponding value: =.

However, for most attacks these characters are needed, in order to ensure a
character is understood as a value and not as part of a request's delimiter, it needs
to be encoded. The simplest encoding consists of using % followed by the
hexadecimal value of the character. In the same way, since % is used to encode
values, it should be encoded...

In order to retrieve the hexadecimal value of a given character, the ascii table can
be used. The following table shows characters used as part of the HTTP protocol
and their URL-encoded value:

29/106

PentesterLab.com » Web for Pentester

Character URL encoded value

\r %0d

\n %0a

%20 or `+`

? %3f

& %26

= %3d

; %3b

%23

% %25

You can use the ASCII table to get the full list. I can be retrieved by running man
ascii on most Linux system or by googling "ascii table".

If you are doing a lot of web application testing, it's probablyIf you are doing a lot of web application testing, it's probably
a good idea to print the ascii table and keep it on your desk.a good idea to print the ascii table and keep it on your desk.

Double encoding

30/106

PentesterLab.com » Web for Pentester

Sometime, the system tested can also decode two times the value provided. For
example, the web server can do a first decoding and the application a second one.
In this case, you will need to double encode the special characters you want to
send.

To do so, you just need to re-encode the encoded value. For example, if you want
to double-encoded an equal sign =, you will need to encode it as a %3d and then re-
encoded it: %253d.

Once receiving %253d, the web server may decode it as %3d and the web application
may decode it again %3d as =.

Double encoding can also be used to bypass some filtering mechanism in some
conditions. This behaviour obviously depends on the behaviour of each component
of the chain involved in the handling of the HTTP request.

HTML encoding

Like for URL, some characters in HTML have a specific semantic and should
therefore be encoded if they need to be used without their semantics' implication.

31/106

PentesterLab.com » Web for Pentester

Character HTML encoded value

> >

< <

& &

" "e;

' '

Any character can also be encoded using their

Decimal value, for example, = can be encoded as =.

Hexadecimal value, for example, = can be encoded as =.

Cookies and sessions

32/106

PentesterLab.com » Web for Pentester

browser's history.

Cookies are initially sent by the server using an HTTP header: Set-Cookie. Once
this header is received the browser will automatically send back the cookie in all
later requests sent to this server using a Cookie header.

The Set-Cookie header contains many optional fields:

An expiration date: to tell the browser when it should delete the
cookie/

A Domain: to tell the browser what sub-domain or hostname the
cookie should be send to.

A Path: to tell the browser for which path the cookies should be sent.

Security flags.

By default, the Path and Domain are mostly used to increase or restrict the
availability of a given cookie for application within the same domain or within the
same server.

I once reviewed an application where it was possible toI once reviewed an application where it was possible to
access other companies information by sending the cookiesaccess other companies information by sending the cookies

received by companyA.domain.com toreceived by companyA.domain.com to
companyB.domain.com... The cookie scope was limited tocompanyB.domain.com... The cookie scope was limited to

each sub-domain so it didn't get detected earlier.each sub-domain so it didn't get detected earlier.

33/106

PentesterLab.com » Web for Pentester

Cookies can have two security related flags:

httpOnly: to prevent access to the cookies to JavaScript code. This
mechanism prevents trivial exploitation of Cross-Site Scripting by
limiting direct access to cookies using document.cookie in JavaScript.

secure: to prevent the browser from sending the cookies over
unencrypted communications. This is mostly use to limit the risk of
someone getting his cookie stolen when browsing a web site without a
secure connection.

Sessions are a mechanism that uses cookies as a transport medium. The main
problem of cookies is that they can be accessed and tampered by users. To prevent
this, developers started using sessions: the cookie sent back to the user contains a
session identifier (session id), when the user sends the cookie back in the next
requests, the application uses this session identifier to access information stored
locally. This information can be stored in a file, in a database or in memory. Some
session's mechanism also encrypted the data for security reasons.

Rack::Session::Cookie is used by default in Rack based applications (most of
Ruby applications use Rack). It provides a different session mechanism, the
information is sent back to users but is signed with a secret. This way, the users
cannot tamper the information in the session (but they can still access it once they
decode it).

34/106

PentesterLab.com » Web for Pentester

By default, in PHP, the sessions are saved using one file per session and are stored
unencrypted (on Debian in /var/lib/php5/). If you have local access to the system
you can go and read other people session's information. If for example your session
id (the value sent back in the cookie value) is o8d7lr4p16d9gec7ofkdbnhm93, you
will see a file named sess_o8d7lr4p16d9gec7ofkdbnhm93 which contains the
information in the session:

cat /var/lib/php5/sess_o8d7lr4p16d9gec7ofkdbnhm93
pentesterlab|s:12:"pentesterlab";

Web server can share sessions between multipleWeb server can share sessions between multiple
applications. It's always interesting to check if a validapplications. It's always interesting to check if a valid

session for one application can give you access to anothersession for one application can give you access to another
application.application.

HTTP authentication

HTTP also provides mechanism to authenticate users. There are three methods
available as part of the protocol:

Basic Authentication: the username and password are encoded
using base64 and sent using an Authorization header:
Authorization: basic YWRtaW46YWRtaW4K.

35/106

PentesterLab.com » Web for Pentester

Digest Authentication: the server sends a challenge (unique
information to be used), the client responds to this challenge (hash
information including the password provided by the user). This
mechanism prevents the password from being sent unencrypted to the
server.

NTLM authentication: that is mostly used in the Microsoft world and
is quite similar to Digest.

Web services

Web services are mostly a simple way to call remote methods using HTTP. It's
basically a fancy way to send calls to the server and get a response back. The
information sent can be:

Sent as with any other HTTP requests for REST.

Sent using XML messages for SOAP.

Sent using JSON based message.

The remote method called can be retrieved by the server:

Based on the URL.

Based on the HTTP header (SOAPAction for example).

36/106

PentesterLab.com » Web for Pentester

Based on the message content.

Testing web services is really similar to testing traditional web applications aside
from the fact that your browser will probably not (out of the box) be able to talk to
the server-side. But once you have examples of requests, you can easily use a
scripting language or any tool allowing you to send HTTP request to fuzz and attack
the server-side code.

Web application security

In this section, we will see where application security should be performed.

Client Side Security

A common mis-conception of developers is to perform security checks on the client
side for example in JavaScript. For example to validate a phone number.

First the user will enter the phone number:

37/106

PentesterLab.com » Web for Pentester

The JavaScript code will then check the value:

And the value seems correct:

38/106

PentesterLab.com » Web for Pentester

The value will then be sent to the server:

The browser won't send the request if the phone number is not in the correct format:

39/106

PentesterLab.com » Web for Pentester

The JavaScript will check the value:

And reject it:

40/106

PentesterLab.com » Web for Pentester

The request will not be sent to the server.

These types of checks are inefficient and can easily be bypassed and should not be
used as security mechanisms. However, these checks can lower the load of the
server by limiting the number of requests to process: if each client's information is
correct before being sent, less incorrect requests will be sent and this will lower the
server's load.

Bypassing Client Side Checks

To bypass client side checks, you need to setup a proxy like Burp Suite. Once you
have the proxy running, you need to tell your browser to send the requests through
this proxy (by changing its configuration or environment variables depending on
your browser and operating system). You will then see the requests sent by your
browser and will be able to intercept and tamper them.

41/106

PentesterLab.com » Web for Pentester

http://fportswigger.net/burp

Once you set up the proxy, you will be able to intercept the request sent by your
browser:

Then you can modify it:

42/106

PentesterLab.com » Web for Pentester

And the server will respond to your modified request:

By using the correct value in the browser, the form gets submitted. However, the
proxy is then used to modify the value and start attacking the web application:

43/106

PentesterLab.com » Web for Pentester

Server side

44/106

PentesterLab.com » Web for Pentester

Applications' security should be performed on the server side. All information
received should not be trusted, data itself or data format should be considered as
malicious. Don't expect a parameter to be a string, it can be a hash or an array.
Don't expect a parameter to be an integer, it can be a string. Even the hostname of
the current server (provided by the Host header) can be malicious. Don't trust
anything and make sure you double check everything. Don't expect people to not
find out about something, if you build something weak it's likely that someone will
find out.

45/106

PentesterLab.com » Web for Pentester

Fingerprinting

Fingerprinting is the first task of a web application testing. Fingerprinting will provide
the tester with a lot of information and may do the difference during the exploitation
of vulnerabilities that you will find later.

Fingerprinting the web server

Fingerprinting the web server consists of trying to retrieve as much information as
possible about it:

Name and version of the server.

Is an application server used in the backend?

Database backend, is the database on the same host.

46/106

PentesterLab.com » Web for Pentester

Usage of a reverse proxy.

Load balancing.

Programming language used.

Retrieving the server name and version can be easily done by inspecting the HTTP
headers:

$ telnet vulnerable 80
GET / HTTP/1.1
Host: vulnerable

HTTP/1.1 200 OK
Date: Sun, 03 Mar 2013 10:56:20 GMT
Server: Apache/2.2.16 (Debian)
X-Powered-By: PHP/5.3.3-7+squeeze14
Content-Length: 6988
Content-Type: text/html

You can also use a bad Host header (or just the IP) to get the default virtual-host
can get more information:

$ telnet vulnerable 80
GET / HTTP/1.1
Host: thisisabadvalue

47/106

PentesterLab.com » Web for Pentester

Browsing the web site

Another action to perform during the fingerprinting process is to simply browse the
website and keep track of any interesting functionalities found:

Upload and download functionalities.

Authentication forms and links: login, logout, password recovery
functions.

Administration section.

Data entry points: "Leave a comment", "Contact us" forms.

During this phase, it's interesting to check the source of the web page and search
for HTML comments. Comments often provide interesting information on the web
site. All browsers allow you to access source of the web page, you can then search
for HTML comments tags: i.e. information between <!-- and -->. Most of the time,
the source code is coloured and the comments are easy to spot:

The file extension used by the web site will provide you more information on what
technology is used:

48/106

PentesterLab.com » Web for Pentester

if you see .php file, the application is written in PHP;

if you see .jsp or .do files, the application is written in Java;

...

Someone can obviously write a Java application with `.php`Someone can obviously write a Java application with `.php`
extensions or a PHP application with `.do` extensions but it'sextensions or a PHP application with `.do` extensions but it's

really unlikely.really unlikely.

It's also possible to fingerprint the website by looking at the way the actions are
mapped to URLs. For example, in Ruby-On-Rails, developers can use scaffolding to
automatically generate code to manage the views, the model and the controller for a
given object. This will generate a URL mapping in which:

/objects/ will give you a list of all the objects;

/objects/new will give you the page to create a new object;

/objects/12 will give you the object with the id 12;

/objects/12/edit will give you the page to modify the object with the
id 12;

...

Check for favicon.ico
49/106

PentesterLab.com » Web for Pentester

The favicon.ico is this little picture you can find in your browser URL bar when you
visit a web site:

This picture can be used as a fingerprinting element since most developers or
system administrators don't change it and most applications or servers provide their
own. For example, the favicon below is used by Drupal.

Check the robots.txt file

Another common file deployed with applications is the robots.txt. Some PHP based
applications make a heavy use of it to prevent search engines to index some parts
of the application. They are a really good source of information and can be used to
map interesting part of the applications and to find out what framework or
application is used to build the website.

For example, the following robots.txt is used by the CMS Joomla:

50/106

PentesterLab.com » Web for Pentester

If the Joomla site is installed within a folder such as at
e.g. www.example.com/joomla/ the robots.txt file MUST be
moved to the site root at e.g. www.example.com/robots.txt
AND the joomla folder name MUST be prefixed to the disallowed
path, e.g. the Disallow rule for the /administrator/ folder
MUST be changed to read Disallow: /joomla/administrator/
#
For more information about the robots.txt standard, see:
http://www.robotstxt.org/orig.html
#
For syntax checking, see:
http://tool.motoricerca.info/robots-checker.phtml

User-agent: *
Disallow: /administrator/
Disallow: /cache/
Disallow: /cli/
Disallow: /components/
Disallow: /images/
Disallow: /includes/
Disallow: /installation/
Disallow: /language/
Disallow: /libraries/
Disallow: /logs/
Disallow: /media/
Disallow: /modules/
Disallow: /plugins/
Disallow: /templates/

51/106

PentesterLab.com » Web for Pentester

Disallow: /tmp/

It also tells you what you should check, if a website does not want something to be
indexed it's probably because it's interesting security-wise.

Searching for directories and pages

After browsing the website, it's important to search for pages or directories that are
not directly available through a link. To achieve that, you need to use a list of file
names and check if these names exist on the remote server.

Directory/Pages busting

The tool Wfuzz (http://www.edge-security.com/wfuzz.php) can be used to detect
directories and pages on the web server using wordlists of common resource
names.

The following command can be run to detect remote files and directories:

$ python wfuzz.py -c -z file wordlist/general/common.txt --hc 404
http://vulnerable/FUZZ

You can do a lot with it:

52/106

PentesterLab.com » Web for Pentester

http://www.edge-security.com/wfuzz.php
http://www.edge-security.com/wfuzz.php

Filter based on the error code.

Only search for file with a given extension:
http://vulnerable/FUZZ.php.

Brute force credentials.

...

As often, the best way to learn is to play with it and see what you can do.

Finding administration pages

Most administration pages are well known URL and can be found using a directory
buster, however it's always really handy to keep a list of administration pages per
technology/server. You can also check the product/project documentation to get this
information.

Among your list of administration pages, keep information onAmong your list of administration pages, keep information on
default credentials that works with them.default credentials that works with them.

Generating errors

53/106

PentesterLab.com » Web for Pentester

The server's configuration can obviously change this behaviour, but this is the page
you will get for a 404 error if the server is Tomcat:

And the same thing for Ruby-on-Rails:

There are a lot of different ways to generate error in a web application, adding some
special characters like NULL byte (%00), single quote (%27) or double quote (%22)
is likely to generate errors for example. You can as well remove a value from the
HTTP request. Once you manage to get the error page, you can get a lot of
information (example for Tomcat):

54/106

PentesterLab.com » Web for Pentester

Anything that can modify the application's behaviour and generating errors is a
good way to retrieve information. An easy for PHP application is to replace
/index.php?name=hacker by /index.php?name[]=hacker.

One of the key thing is to be able to read them. It sounds silly but you will be
surprised how many people think that two errors are the same even if the error
messages are different: "The evil is in the detail".

Keep information

55/106

PentesterLab.com » Web for Pentester

Any information should be kept, everything should be saved:

A path on the remote server.

An error message.

The database backend used.

An internal IP address disclosed in the headers.

Everything, ...

Keeping information will often help you to exploit another vulnerability, for example
if you need to know where the application is stored on the server, you may already
have this information thanks to an error message from another part of the
application.

56/106

PentesterLab.com » Web for Pentester

Building useful tools

It can be really handy to be able to have some simple scripts to send HTTP
requests. I will recommend that you build at least the following:

A HTTP client using a traditional HTTP library (like Ruby's net/http)
and one using sockets only that allows you to send basic GET and
POST requests.

A HTTP client that supports SSL (both with HTTP library and with
socket only).

A HTTP client that supports cookies (both with HTTP library and with
socket only).

Once you have all of this working, you can build a tool thatOnce you have all of this working, you can build a tool that
support all of this together.support all of this together.

57/106

PentesterLab.com » Web for Pentester

Once you have all of this ready to go, it is really easy to build your own tool to
exploit a vulnerability or to automate some part of the discovery process during a
test. Complex bugs often need a bit of automation, you are unlikely to be able to
exploit them unless you can write your own HTTP clients.

58/106

PentesterLab.com » Web for Pentester

Examples of Web vulnerabilities

This section puts together few practical exercises of common web vulnerabilities. If
you are already familiar with web testing, don't read further and just try and see how
you go. Then you can come back to see what other methods can be used and what
was expected.

To test for web vulnerabilities, I mainly mix two methods:

Trying to work out what the code on the server side looks like.

Trying to send different values that should give you the same results
if the page is vulnerable.

I will provide some examples of these methods for the examples in the ISO.

59/106

PentesterLab.com » Web for Pentester

In this exercise, the error messages are echoed back in most pages, however in
real life, error messages should (and often are) turned off. The methods used here
to detect each vulnerability work for both cases.

You also need to remember that penetration testing is a guessing game, you will
sometime need to guess a path, need to try hundreds of value. Try your usual
detection method to find out that only a third of them work and you will then need to
work out new assertion to work out if this particularly page is vulnerable.

Most web issues rely on the same problem: being able to break the syntax:

Breaking the syntax of an SQL statement to leverage a SQL injection
vulnerability.

Breaking the syntax of a HTML page to leverage a Cross-Site
Scripting.

...

For example, if you have the following pattern:

[CODE][SEPARATOR][USER INPUT][SEPARATOR][CODE]

60/106

PentesterLab.com » Web for Pentester

Your goal is to use [USER INPUT] to inject [CODE] and to do that, you will need to
inject a [SEPARATOR] as part of the [USER INPUT]. Sometimes there is no need of a
separator. In most cases, the separator is one of these characters: ', ", `. Injecting
them (one after each other) and see what response you get back will often give you
a good idea on if therei there is anything suspect in there.

Cross-Site Scripting (XSS)

Cross-Site scripting comes from a lack of encoding when information gets sent to
application's users. This can be used to inject arbitrary HTML and JavaScript and
get this payload runs in the web browser of legitimate users. As opposed to other
attacks, XSS are targeting application's users instead of directly targeting the
server.

Some example of exploitation include:

injecting a fake login form;

retrieving legitimate users' cookies;

injecting browser's exploits;

getting users to perform an arbitrary action in the web application;

...

61/106

PentesterLab.com » Web for Pentester

In this section, we will only focus on the detection of Cross-Site Scripting, you will
have to wait for a full exercise on this subject to get more details on how to exploit
them.

The easiest and most common proof of a XSS being found is to get an alert box to
pop up. This payload as many advantages:

it shows that JavaScript can be triggered;

it's simple;

it's harmless.

To trigger a pop-up, you can simply use the following payload: alert(1).

If you are injecting inside HTML code, you will need to tell the browser that it's
JavaScript code. You can use the <script> tag to do that:
<script>alert(1);</script>.

When testing for XSS, there are two important things to remember:

the response you get back from the server is probably not the only
place this information will be echoed back. If you inject a payload and
you get it back correctly encoded in page A, it doesn't mean that this
information will be correctly encoded in page B.

62/106

PentesterLab.com » Web for Pentester

if you find a problem of encoding but can't get your XSS payload to
run, someone else may be able to. It's always important to report
problem of encoding even if some protection prevents you from getting
your payload to execute. Security is an evolving domain, with new
tricks published every week. Even if you cannot exploit a XSS now, you
or someone else may be able to get another payload to work later on.

There are three types of XSS:

Reflected: the payload is directly echoed back in the response.

Stored: the payload can be echoed back directly in the response but
will more importantly be echoed back in the response when you come
back to this page or to another page. The payload is stored in the
backend of the application.

DOM-based: the payload is not echoed back in the page. It gets
executed dynamically when the browser renders the page.

When testing for XSS, you need to read the source of the HTML page sent back,
you cannot just wait for the alert box to pop up. Check what characters get encoded
and what characters don't get encoded, from that you may find a payload that
works.

63/106

PentesterLab.com » Web for Pentester

Some browsers provide built-in protection against XSS, this protection can be
enabled or disabled by the server (it has been disabled in the ISO). If you find that
your payload is directly echoed back in the page but no alert box pops up, it's
probably because of this protection. You can also disable this protection by telling
your browser to disable it. For example, in Chrome, it can be done by running
Chrome with the option --disable-xss-auditor.

Example 1

The first vulnerable example is just here to get you started with what is going on
when you find a XSS. Using the basic payload, you should be able to get an alert
box.

Once you send your payload, you should get something like:

64/106

PentesterLab.com » Web for Pentester

Make sure that you check the source code of the HTML page to see that the
information you sent as part of the request is echoed back without any HTML
encoding.

Example 2

In the second example, a bit of filtering is involved. The web developer added some
regular expression to prevent the simple XSS payload to work.

If you play around, you can see that <script> and </script> are filtered. One of the
most basic way to bypass this type of filters is to play with the case: if you try
<sCript> and </sCRIpt for example, you should be able to get the alert box.

Example 3

You notified the developer about your bypass. He added more filtering and now
seem to prevent your previous payload. However, he is making a terrible mistake in
his code (which was also present in the previous code)...

If you keep playing around, you will realise that if you use Pentest<script>erLab
for payload, you can see PentesterLab in the page. You can probably use that to
get <script> in the page and your alert box to pop up.

Example 4

65/106

PentesterLab.com » Web for Pentester

In this example, the developer decided to completely blacklist the word script: if
the request matches script, the execution stops.

Fortunately (or unfortunately depending on what side you are), there are a lot of
ways to get JavaScript to be run (non-exhaustive list):

with <a tag and for the following events: onmouseover (you will need
to pass your mouse on the link), onmouseout, onmousemove, onclick...

with <a tag directly in the URL: <a href='javascript:alert(1)'...
(you will need to click the link to trigger the JavaScript code and
remember that this won't work since you cannot use script in this
example).

with <img tag directly with the event onerror: <img src='zzzz'
onerror='alert(1)' />.

with <div tag and for the following events: onmouseover (you will
need to pass your mouse on the link), onmouseout, onmousemove,
onclick...

...

You can use any of these techniques to get the alert box to pop-up.

Example 5

66/106

PentesterLab.com » Web for Pentester

In this example, <script> tag is accepted and gets echoed back. But as soon as
you try to inject a call to alert, the PHP script stops its execution. The problem
seems to come from a filter on the word alert.

Using JavaScript's eval and String.fromCharCode(), you should be able to get an
alert box without using the word alert directly. String.fromCharCode() will decode
an integer (decimal value) to the corresponding character.

You can write a small tool to transform your payload to thisYou can write a small tool to transform your payload to this
format using your favorite scripting language.format using your favorite scripting language.

Using this trick and the ascii table, you can easily generate the string: alert(1) and
call eval on it.

Another easier bypass is to use the functions prompt or confirm in Javascript. They
are less known but will give you the same result.

Example 6

Here, the source code of the HTML page is a bit different. If you read it, you will see
that the value you are sending is echoed back inside JavaScript code. To get your
alert box, you will not need to inject a script tag, you will just need to correctly
complete the already existing JavaScript code and add your own payload, then you
will need to get rid of the code after your injection point by commenting it out (using
//) or by adding some dummy code (var $dummy = ") to close it correctly.

67/106

PentesterLab.com » Web for Pentester

Example 7

This example is similar to the one before, however, you won't be able to use special
characters since they will be HTML encoded. As you will see, you don't really need
any of these characters.

This issue is common in PHP web application because the well known function
used to HTML-encode character (htmlentities) does not encode single quotes (')
unless you told it to using the ENT_QUOTES flag.

Example 8

Here, the value echoed back in the page is correctly encoded. However, there is still
a XSS in this page. To build the form, the developer used and trusted PHP_SELF
which is the path provide by the user. It's possible to manipulate the path of the
application to:

call the current page (however you will get an HTTP 404 page);

get a XSS payload in the page.

68/106

PentesterLab.com » Web for Pentester

This can be done because the current configuration of the server will call
/xss/example8.php when any URL matching /xss/example8.php/... is accessed.
You can simply get your payload inside the page by accessing
/xss/example8.php/[XSS_PAYLOAD]. Now that you know where to inject your
payload, you will need to adapt it to get it to work and get the famous alert box.

Trusting the path provided by users is a common mistake and it can often be used
to trigger XSS along other issues. It's pretty common in pages with forms and in
error pages (404 and 500 pages).

Example 9

This example is a DOM-based XSS. This page could actually be completely static
and still be vulnerable.

In this example, you will need to read the code of the page to understand what is
happening. When the page is rendered, the JavaScript code uses the current URL
to retrieve the anchor portion of the URL (#...) and dynamically (on the client side)
write it inside the page. This can be used to trigger a XSS if you use the payload as
part of the URL.

SQL injections

69/106

PentesterLab.com » Web for Pentester

SQL injections are one of the most common (web) vulnerabilities. All SQL injections
exercises use MySQL for back-end. SQL injections come from a lack of
encoding/escaping of user-controlled input when included in SQL queries.

Depending on how the information get added in the query, you will need different
things to break the syntax. There are three different ways to echo information in a
SQL statement:

Using quotes: single quote or double quote.

Using back-ticks.

Directly.

For example, if you want to use information as a string you can do:

SELECT * FROM user WHERE name="root";

or

SELECT * FROM user WHERE name='root';

If you want to use information as a integer you can do:

SELECT * FROM user WHERE id=1;

70/106

PentesterLab.com » Web for Pentester

And finally, if you want to use information as a column name, you will need to do:

SELECT * FROM user ORDER BY name;

or

SELECT * FROM user ORDER BY `name`;

It's also possible to use integer as string but it will be slower:

SELECT * FROM user WHERE id='1';

The way information is echoed back and mostly what separator is used will decide
the detection technique to use. However, you don't have this information, and you
will need to try to guess it. You will need to formulate hypotheses and try to verify
them. That's why spending time poking around with the example on the liveCD is so
important.

Example 1

In this first example, we can see that the parameter is a string and we can see one
line in the table. To understand the server side code we need to start poking
around:

71/106

PentesterLab.com » Web for Pentester

If we add extra-characters like "1234" using ?name=root1234, no
record is displayed in the table. From that, we can guess that the
request use our value in some kind of matching.

If we inject spaces in the request using ?name=root+++ (after
encoding), the record is displayed. MySQL (by default) will ignore
trailing spaces in the string when performing the comparison.

If we inject a double quote using ?name=root", no record is displayed
in the table.

If we inject a single quote using ?name=root', the table disappears.
We probably broke something...

From this first part we can deduce that the request must look like:

SELECT * FROM users WHERE name='[INPUT]';

Now let's verify this hypothesis.

If we are right, the following injections should give the same results.

?name=root' and '1'='1: the quote in the initial query will close the
one at the end of our injection.

?name=root' and '1'='1' # (don't forget to encode #): the quote in
the initial query will be commented out.

72/106

PentesterLab.com » Web for Pentester

?name=root' and 1=1 # (don't forget to encode #): the quote in the
initial query will be commented out and we don't need the ' in '1'='1'.

?name=root' # (don't forget to encode #): the quote in the initial
query will be commented out and we don't need the 1=1.

Now these requests may not return the same thing:

?name=root' and '1'='0: the quote in the initial query will close the
one at the end of our injection. The page should not return any result
(empty table) since the selection criteria always return false.

?name=root' and '1'='1 # (don't forget to encode #): the quote in
the initial query will be commented out. And we should have the same
result as the query above.

?name=root' or '1'='1: the quote in the initial query will close the
one at the end of our injection. or will select all results with the second
part being always true. It may give the same result but it's unlikely
since the value is used as a filter for this example (as opposed to a
page only showing one result at a time).

?name=root' or '1'='1' # (don't forget to encode #): the quote in
the initial query will be commented out. And we should have the same
result as the query above.

73/106

PentesterLab.com » Web for Pentester

Will all these tests, we can be sure that we have a SQL injection. This training only
focus on detection, you can look into other PentesterLab training to learn how to
exploit this type of issues.

Example 2

In this example, the error message gives away the protection created by the
developer: ERROR NO SPACE. This error message appears as soon as a space is
injected inside the request. It prevents us from using the ' and '1'='1 method or
any fingerprinting that use the space character. However, this filtering can easily be
bypassed using tabulation (HT or \t). You will however need to encode it to use it
inside the HTTP request. Using this simple bypass, you should be able to see how
to detect this vulnerability.

Example 3

In this example, the developer blocks spaces and tabulations. However there is a
way to bypass this filter. You can use comments between the keywords to build a
valid request without any space or tabulation. The following SQL comments can be
used: /**/. By replacing all space/tabulation in the previous examples using this
comment, you should be able to test for this vulnerability.

Example 4

74/106

PentesterLab.com » Web for Pentester

This example is a typical example of mis-understanding of how to protect against
SQL injection. In the 3 previous examples, using the function
mysql_real_escape_string would have prevented the vulnerability. In this example,
the developer used the same logic. However, the value used is an integer and is not
echoed between single quote '. Since the value is directly put in the query, using
mysql_real_escape_string does not prevent anything. Here you just need to be
able to add space and SQL keywords to break the syntax. The detection method is
really similar to the one used for string based SQL injection. You just don't need the
quote at the beginning of the payload.

Another method to detect this is to play with the integer. The initial request is ?id=2,
by playing with the value 2, we can detect the SQL injection:

?id=2 # (# needs to be encoded) should return the same thing.

?id=3-1 should return the same thing. The database will
automatically perform the subtraction and you will get the same result.

?id=2-0 should return the same thing.

?id=1+1 (+ needs to be encoded) should return the same thing. The
database will automatically perform the addition and you will get the
same result.

?id=2.0 should return the same thing.

And the following should not return the same results:

75/106

PentesterLab.com » Web for Pentester

?id=2+1.

?id=3-0.

Example 5

This example is really similar to the previous detection-wise. If you look into the
code, you will see that the developer tried to prevent SQL injection by using a
regular expression:

if (!preg_match('/^[0-9]+/', $_GET["id"])) {
 die("ERROR INTEGER REQUIRED");
}

However the regular expression used is incorrect, it only ensures that the parameter
id starts with a digit. The detection method used previously can be used to detect
this vulnerability.

Example 6

This example is the other way around: the developer did a mistake in the regular
expression again:

76/106

PentesterLab.com » Web for Pentester

if (!preg_match('/[0-9]+$/', $_GET["id"])) {
 die("ERROR INTEGER REQUIRED");
}

This regular expression only ensures that the parameter id ends with a digit
(thanks to the $ sign). But does not ensure that the beginning of the parameter is
valid (missing ^). You can use the methods learnt previously, you just need to add
an integer at the end of your payload. This digit can be part of the payload or can be
put after a SQL comment: 1 or 1=1 # 123.

Example 7

Another and last example of bad regular expression:

if (!preg_match('/^-?[0-9]+$/m', $_GET["id"])) {
 die("ERROR INTEGER REQUIRED");
}

Here we can see that the beginning (^) and end ($) of the string are correctly
checked. However, the regular expression contains the modifier PCRE_MULTILINE
(/m). The multine modifier will only validate that one of the lines is only containing
an integer, and the following values will therefore be valid (thanks to the new line in
them):

123\nPAYLOAD;

77/106

PentesterLab.com » Web for Pentester

PAYLOAD\n123;

PAYLOAD\n123\nPAYLOAD.

These values need to be encoded when used in a URL, but using that and the
techniques seen previously you should be able to detect this vulnerability.

Example 8

In this example, the parameter name gives away where it will get echoed in the SQL
query. If you look into MySQL documentation, there are two ways to provide a value
inside an ORDER BY statement:

directly: ORDER BY name ;

between back-ticks: ORDER BY `name`.

The ORDER BY statement cannot be used with value inside single quote ' or double
quote ". If this get used, nothing will get sorted since MySQL considers this as
constants.

To detect this type of vulnerability, we can try to get the same result using different
payloads:

name` # (# needs to be encoded) should give the same results.

78/106

PentesterLab.com » Web for Pentester

name` ASC # (# needs to be encoded) should give the same results.

name`, `name: the back-tick in the initial query will close the one at
the end of our injection.

And the following payloads should give different results:

name` DESC # (# needs to be encoded).

name` should not give any result since the syntax is incorrect.

Example 9

This example is similar to the previous one, but instead of back-tick ```, the value
used to sort is directly echoed back inside the query. Only small variations from the
methods seen before are needed.

There are other methods that can be used in this case since we are directly
injecting in the request without a back-tick before. We can use the MySQL IF
statement to generate more payloads:

IF(1, name,age) should give the same results.

79/106

PentesterLab.com » Web for Pentester

IF(0, name,age) should give different results. You can see that the
columns are sorted by age but the sort function compare the values as
string not as integer (10 is smaller than 2), this is a side effect of IF that
will sort values as string if one of the column contains strings.

Directory traversal

Directory traversals come from a lack of filtering/encoding of information used as
part of a path by an application.

As for other vulnerabilities, you can use the "same value technique" to test for this
type of issue. For example, if the path used by the application inside a parameter is
/images/photo.jpg. You can try to access:

/images/./photo.jpg: you should see the same file.

/images/../photo.jpg: you should get an error.

/images/../images/photo.jpg: you should see the same file again.

/images/../IMAGES/photo.jpg: you should get an error (depending
on the file system) or something weird is going on.

If you don't have the value images and the legitimate path looks like photo.jpg, you
will need to work out what the parent repository is.

80/106

PentesterLab.com » Web for Pentester

Once you have tested that, you can try to retrieve other files, on Linux/Unix the most
common test cases is the /etc/passwd. You can test:
images/../../../../../../../../../../../etc/passwd, if you get the passwd file,
the application is vulnerable. The good news is that you don't need to know the
number of ../, if you put too many, it will still work.

Another interesting thing to know is that if you have a directory traversal in Windows
you will be able to access test/../../../file.txt even if the directory test does
not exist where it won't work on Linux. This can be really useful where the code
concatenate user-controlled data to create a file name. For example, the following
PHP code is supposed to add the parameter id to get a file name (example_1.txt
for example). On Linux, you won't be able to exploit this vulnerability if there is no
directory starting by example_ where on Windows, you will be able to exploit it even
if there is no such directory.

$file = "/var/files/example_".$_GET['id'].".txt";

In these exercises, the vulnerabilities are illustrated by a script used inside an <img
tag, you will need to read the HTML page (or use "Copy image URL") to find the
correct link and start exploiting the issue.

Example 1

81/106

PentesterLab.com » Web for Pentester

The first example is a really simple directory traversal, you just need to go up in the
file system and then back down to get any files you want. You will however be
restricted by the file system permissions and won't be able to access /etc/shadow
for example.

Based on the header sent by the server, your browser will display the content of the
response. Sometimes the browser will send the response with a header Content-
Disposition: attachment and your browser will not display the file directly. You
can open the file to see the content however, it will take you some time for every
test.

Using a Linux/Unix system, you can be faster by using wget:

% wget -O - 'http://vulnerable/dirtrav/example1.php?
file=../../../../../../../etc/passwd'
[...]
daemon:x:1:1:daemon:/usr/sbin:/bin/sh
bin:x:2:2:bin:/bin:/bin/sh
[...]

Example 2

82/106

PentesterLab.com » Web for Pentester

In this example, you can see that the full path is used to access the file. However, if
you try to just replace it by /etc/passwd, you won't get anything... It looks like a
simple check is performed by the PHP code. You can however bypass it by keeping
the beginning of the path and add your payload at the end to go up and back down
within the file system.

Example 3

This example is based on a common problem when you exploit directory traversal:
the server-side code adds its own suffix to your payload. This can be easily
bypassed by using a NULL BYTE (that you need to URL-encode as %00). Using
NULL BYTE to get rid of any suffix added by the server-side code is a common
bypass and works really well in Perl and older versions of PHP.

In this code, the issue is simulated since PHP solved thisIn this code, the issue is simulated since PHP solved this
type of bypass since the versiontype of bypass since the version

[5.3.4](http://php.net/releases/5_3_4.php).[5.3.4](http://php.net/releases/5_3_4.php).

File include

In a lot of applications, developers need to include files to load classes or to share
some templates between multiple web pages.

83/106

PentesterLab.com » Web for Pentester

File include vulnerabilities come from a lack of filtering when a user-controlled
parameter is used as part of a file name in a call to an including function (require,
require_once, include or include_once in PHP for example). If the call to one of
these methods is vulnerable, an attacker will be able to manipulate the function to
load his own code. File include vulnerabilities can also be used as a directory
traversal to read arbitrary files. However, if the arbitrary code contains an opening
PHP tag, the file will be interpreted as PHP code.

This including function can allow the loading of local resources or remote resource
(a website for example). If vulnerable it will lead to:

Local File Include: LFI. A local file is read and interpreted.

Remote File Include: RFI. A remote file is retrieved and interpreted.

By default, PHP disables loading of remote files thanks to the configuration option:
allow_url_include. In the ISO, it has been enabled to allow you to test it.

Example 1

In this first example, you can see an error message as soon as you inject a special
character (a quote for example) in the parameter:

84/106

PentesterLab.com » Web for Pentester

Warning: include(intro.php'): failed to open stream: No such file or
directory in /var/www/fileincl/example1.php on line 7 Warning:
include(): Failed opening 'intro.php'' for inclusion
(include_path='.:/usr/share/php:/usr/share/pear') in
/var/www/fileincl/example1.php on line 7

If you read carefully the error message, you can extract a lot of information:

The path of the script: /var/www/fileincl/example1.php.

The function used: include().

The value used in the call to include is the value we injected
intro.php' without any addition or filtering.

We can use the methods used to detect directory traversal to detect file include. For
example, you can try to include /etc/passwd by using the ../ technique.

We can test for Remote File Include by requesting an external resource:
https://pentesterlab.com/. And we will see that the page of the website gets included
inside the current page.

PentesterLab's website also contains a test for this type of vulnerability, if you use
the URL https://pentesterlab.com/test_include.txt. You should get the result of the
function phpinfo() in the page:

85/106

PentesterLab.com » Web for Pentester

https://pentesterlab.com/
https://pentesterlab.com/
https://pentesterlab.com/test_include.txt
https://pentesterlab.com/test_include.txt

Example 2

As before with the directory traversal, this example adds its own suffix to the value
provided. As before, you can get rid of it (for LFI) using a NULL BYTE. For RFI, you
can get rid of the suffix added by adding &blah= or ?blah= depending on your URL.

In this exercise, the code simulates the behaviour of oldest versions of PHP. PHP
now handles correctly paths and they cannot be poisoned using a NULL BYTE as
they used to.

In this code, the issue is simulated since PHP solved thisIn this code, the issue is simulated since PHP solved this
type of bypass since the versiontype of bypass since the version

(5.3.4)[http://php.net/releases/5_3_4.php].(5.3.4)[http://php.net/releases/5_3_4.php].

86/106

PentesterLab.com » Web for Pentester

Code injection

In this section, we are going to work on code execution. Code executions come
from a lack of filtering and/or escaping of user-controlled data. When you are
exploiting a code injection, you will need to inject code in the information you are
sending to the application. For example, if you want to run the command ls, you will
need to send system("ls") to the application since it is a PHP application.

In the same way, it's always handy to know how to comment out the rest of the code
(i.e.: the suffix that the application will add to the user-controlled data). In PHP, you
can use // to get rid of the code added by the application.

As for SQL injection, you can use the same value technique to test and ensure you
have a code injection:

By using comments and injecting /* random value */.

By injecting a simple concatenation "." (where " are used to break
the syntax and reform it correctly).

By replacing the parameter you provided by a string concatenation,
for example "."ha"."cker"." instead of hacker.

You can also use time-based detection for this issue by using the PHP function
sleep. You will see a time difference between:

87/106

PentesterLab.com » Web for Pentester

Not using the function sleep or calling it with a delay of zero:
sleep(0).

A call to the function with a long delay: sleep(10).

Example 1

This first example is a trivial code injection. If you inject a single quote, nothing
happens. However, you can get a better idea of the problem by injecting a double
quote:

Parse error: syntax error, unexpected '!', expecting ',' or ';' in
/var/www/codeexec/example1.php(6) : eval()'d code on line 1

This could be the other way around, the single quote couldThis could be the other way around, the single quote could
generate an error where the double quote may not.generate an error where the double quote may not.

Based on the error message, we can see that the code is using the function eval:
"Eval is evil...".

We saw that the double quote breaks the syntax, and that the function eval seems
to be using our input. From that we can try to work out payloads that will give us the
same results:

88/106

PentesterLab.com » Web for Pentester

".": we are just adding a string concatenation, this should give us
the same value.

"./*pentesterlab*/": we are just adding a string concatenation and
information inside comments, this should give us the same value.

Now that we have similar values working we need to inject code. To show that we
can execute code, we can try to run a command (for example uname -a using the
code execution). The full PHP code looks like:

system('uname -a');

The challenge here is to break out of the code syntax and keep a clean syntax,
there are many ways to do it:

By adding dummy code: ".system('uname -a'); $dummy=".

By using comment: ".system('uname -a');# or ".system('uname -
a');//.

Don't forget that you will need to URL-encode some of the characters (# and ;)
before sending the request.

Example 2

When ordering information, developers use two methods:
89/106

PentesterLab.com » Web for Pentester

order by in a SQL request;

usort in PHP code.

The function usort is often used with the function create_function to dynamically
generate the "sorting" function based on user-controlled information. If not enough
filtering and validation is performed, this can lead to code execution.

By injecting a single quote we can have an idea of what is going on:

Parse error: syntax error, unexpected T_CONSTANT_ENCAPSED_STRING in
/var/www/codeexec/example2.php(22) : runtime-created function on line
1 Warning: usort() expects parameter 2 to be a valid callback, no
array or string given in /var/www/codeexec/example2.php on line 22

The source code of the function looks like the following:

90/106

PentesterLab.com » Web for Pentester

ZEND_FUNCTION(create_function)
{
 [...]
 eval_code = (char *) emalloc(eval_code_length);
 sprintf(eval_code, "function " LAMBDA_TEMP_FUNCNAME "(%s){%s}",
Z_STRVAL_PP(z_function_args), Z_STRVAL_PP(z_function_code));

 eval_name = zend_make_compiled_string_description("runtime-created
function" TSRMLS_CC);
 retval = zend_eval_string(eval_code, NULL, eval_name TSRMLS_CC);
 [...]

We can see that the code that will be evaluated is put inside curly brackets {...},
we will need this information to correctly finish the syntax after our injection.

As opposed to the previous code injection, here you are not injecting inside single
or double quotes. We know that we need to close the statement with } and
comment out the rest of the code using // or # (with encoding). We can try poking
around with:

?order=id;}//: we get an error message (Parse error: syntax
error, unexpected ';'). We are probably missing one or more
brackets.

?order=id);}//: we get a warning. That seems about right.

91/106

PentesterLab.com » Web for Pentester

?order=id));}//: we get an error message (Parse error: syntax
error, unexpected ')' i). We have probably too many closing
brackets.

Since we now know how to finish the code correctly (a warning does not stop the
execution flow, we can inject arbitrary code and gain code execution using ?
order=id);}system('uname%20-a');// for example.

Example 3

We talked earlier about regular expression modifiers with multi-lines regular
expression. Another very dangerous modifier exists in PHP: PCRE_REPLACE_EVAL
(/e). This modifier will cause the function preg_replace to evaluate the new value
as PHP code before performing the substitution.

`PCRE_REPLACE_EVAL` has been deprecated as of PHP`PCRE_REPLACE_EVAL` has been deprecated as of PHP
5.5.05.5.0

Here, you will need to change the pattern to add the /e modifier. Once you added
this modifier, you should get a notice:

Notice: Use of undefined constant hacker - assumed 'hacker' in
/var/www/codeexec/example3.php(3) : regexp code on line 1

92/106

PentesterLab.com » Web for Pentester

The function preg_replace try to evaluate the hacker as a constant but it's not
defined and you get this message.

You can easily replace hacker by a call to the function phpinfo() to get a visible
result. Once you can see the result of the phpinfo function, you can use the
function system to run any command.

Example 4

This example is based on the function assert, when used incorrectly this function
will evaluate the value received. This behaviour can be used to gain code
execution.

By injecting a single quote (could be a double quote depending the way the string
was declared), we can see an error message indicating that PHP tried to evaluate
the code:

Parse error: syntax error, unexpected T_ENCAPSED_AND_WHITESPACE in
/var/www/codeexec/example4.php(4) : assert code on line 1 Catchable
fatal error: assert(): Failure evaluating code: 'hacker'' in
/var/www/codeexec/example4.php on line 4

Once we broke the syntax, we need to try to reconstruct it correctly. We can try the
following: hacker'.'. The error message disappeared.

93/106

PentesterLab.com » Web for Pentester

Now that we know how to finish the syntax to avoid errors, we can just inject our
payload to run the function phpinfo(): hacker'.phpinfo().' and we get the
configuration of the PHP engine in the page.

Command injection

Command injection comes from a lack of filtering and encoding of information used
as part of a command. The simpler example comes from using the function system
and take a parameter as an argument of this command.

There are many ways to exploit a command injection:

By injecting the command inside back-tick, for example `id`

By redirecting the result of the first command into the second | id

By running another command if the first one succeeds: && id (where
& needs to be encoded)

By running another command if the first one fails (and making sure it
does: error || id (where error is just here to cause an error).

It's also possible to use the same value technique to perform this type of detection,
for example you can replace 123 by `echo 123`. The command inside back-ticks
will be executed first and return exactly the same value to be used by the
command.

94/106

PentesterLab.com » Web for Pentester

You can also use time-based vectors to detect this kind of vulnerabilities. You can
use a command that will take time to process on the server (with a risk of denial of
service) or you can just use the command sleep to tell the server to wait a certain
amount of time before continuing. For example, using sleep 10.

Example 1

The first example is a trivial command injection, the developer didn't perform any
input validation and you can directly inject your commands after the ip parameter.

Based on the techniques seen above you can for example use the payload && cat
/etc/passwd (with encoding) to see the content of /etc/passwd.

Example 2

This example validates the parameter provided but does it incorrectly. As we saw
before with the SQL injection, the regular expression used is multi-line. Using the
same technique we saw for the SQL injection, you can easily gain code execution.

The good thing here is that you don't even need to inject a separator you can just
add the encoded new line (%0a) and then put your command.

Example 3

95/106

PentesterLab.com » Web for Pentester

This example is really similar to the previous one, the only difference is that the
developer does not stop the script correctly. In PHP, an easy and simple way to
redirect users if one of the value provided doesn't match some security constraint is
to call the function header. However, even if the browser will get redirected, this
function does not stop the execution flow and the script will still finish to run with the
dangerous parameter. The developer needs to call the function die after the call to
the function header to avoid this issue.

You cannot easily exploit this vulnerability in your browser since your browser will
follow the redirect and will not display the redirecting page. To exploit this issue you
can use telnet:

% telnet vulnerable 80
GET /commandexec/example3.php?ip=127.0.0.1|uname+-a HTTP/1.0

or using netcat:

% echo "GET /commandexec/example3.php?ip=127.0.0.1|uname+-a
HTTP/1.0\r\n" | nc vulnerable 80

If you look carefully at the response you will see that you get a 302 redirect but in
the body of the response, you can see the result of the command uname -a.

LDAP attacks

96/106

PentesterLab.com » Web for Pentester

In this section, we will cover LDAP attacks. LDAP is often used as a backend for
authentication, especially in Single-Sign-On (SSO) solutions. LDAP has its own
syntax that we will see in more details in the following examples.

Example 1

In this first example, you connect to a LDAP server using your username and
password however the LDAP does not authenticate you since your credentials are
invalid.

However, some LDAP servers authorise NULL Bind: if a null values are sent, the
LDAP server will accept to bind the connection and the PHP code will think that the
credentials are correct. To get the bind with 2 null values, you will need to
completely remove this parameter from the query. If you keep something like
username=&password= in the URL, these values will not work since they won't be
null, they will be empty.

It's an important check to perform on all login forms that youIt's an important check to perform on all login forms that you
will test in the future even if the backend is not LDAP-based.will test in the future even if the backend is not LDAP-based.

Example 2

The most common pattern of LDAP injection is to be able to inject in a filter. Here
we will see how you can use LDAP injection to bypass an authentication check.

97/106

PentesterLab.com » Web for Pentester

First, you need to learn a bit of LDAP syntax. When you are retrieving a user based
on its username the following will be used:

(cn=[INPUT])

If you want to add more conditions and some boolean logic, you can use:

A boolean OR using |: (|(cn=[INPUT1])(cn=[INPUT2])) to get
records matching [INPUT1] or [INPUT2].

A boolean AND using &: (&(cn=[INPUT1])(userPassword=[INPUT2]))
to get records for which the cn matches [INPUT1] and the password
matches [INPUT2].

As you can see the boolean logic is located at the beginning of the filter. Since
you're likely to inject after it, it's not always possible (depending on the LDAP
server) to inject logic inside the filter if it's just (cn=[INPUT]).

One of the most used thing in LDAP is the wildcard * to match any values. That can
be used to match everything * or just substrings (adm* for all words starting by adm
for example).

As for other injections, we will need to remove anything added by the server-side
code. We can get rid of the end of the filter using a NULL BYTE (encoded as %00).

Here we have a login script, we can see that if we use:
98/106

PentesterLab.com » Web for Pentester

username=hacker&password=hacker we get authenticated (this is the
normal request).

username=hack*&password=hacker we get authenticated (the wildcard
matches the same value).

username=hacker&password=hac* we don't get authenticated (the
password is likely to be hashed).

Now we will see how we can use the LDAP injection in the username parameter to
bypass the authentication. Based on our previous tests, we can deduce that the
filter probably looks like:

(&(cn=[INPUT1])(userPassword=HASH[INPUT2]))

Where HASH is an unsalted hash (probably MD5 or SHA1).

LDAP supports several formats: `{CLEARTEXT}`, `{MD5}`,LDAP supports several formats: `{CLEARTEXT}`, `{MD5}`,
`{SMD5}` (salted MD5), `{SHA}`, `{SSHA}` (salted SHA1),`{SMD5}` (salted MD5), `{SHA}`, `{SSHA}` (salted SHA1),

`{CRYPT}` for passwords' storage.`{CRYPT}` for passwords' storage.

Since [INPUT2] is hashed, we cannot use it to inject our payload.

Our goal here will be to inject inside [INPUT1] (the username parameter), we will
need to inject:

99/106

PentesterLab.com » Web for Pentester

The end of the current filter using hacker).

An always-true condition ((cn=*) for example)

A) to keep a valid syntax and close the first).

A NULL BYTE (%00) to get rid of the end of the filter.

Once you put this together, you should be able to login as hacker with any
password. You can then try to find other users using the wildcard trick. For example,
you can use a* in the first part of the filter and check who you are logged in as.

In most cases, LDAP injection will allow only you to bypass authentication and
authorisation checks but retrieving arbitrary data (as opposed to just getting more
results) is often really challenging or impossible.

Upload

In this section, we will cover how to use file upload functionalities to gain code
execution.

In web applications (especially the ones using the file systems to determine what
code should be ran), you can get code execution on a server if you manage to
upload a file with the right filename (mostly depending on the extension). In this
section, we will see the basics of this type of attacks.

100/106

PentesterLab.com » Web for Pentester

First, since we are working on a PHP application, we will need a PHP web shell. A
web shell is just a simple script or web application that run the code or commands
provided. For example, in PHP, the following code is a really simple web shell:

<?php
 system($_GET["cmd"]);
?>

More complex web shell can do more advanced things like providing database and
file system access or even TCP tunnelling.

Example 1

The first example is a really basic upload form with no restriction. By using the web
shell above and naming it with a .php extension you should be able to get it upload
on the server. Once it's uploaded you can access the script (with the parameter
cmd=uname for example) to get commands execution.

Example 2

In this second example, the developer put a restriction on the file name: the file
name cannot finish by .php. To bypass this restriction, you can use one of the
following methods:

101/106

PentesterLab.com » Web for Pentester

change the extension to .php3. On other systems, extensions like
.php4 or .php5 may also work. It depends on the configuration of the
web server.

use an extension the Apache does not know .blah after the
extension .php. Since Apache does not know how to handle the
extension .blah, it will move to the next one: .php and run the PHP
code.

upload a .htaccess file to enable another extension to be ran by PHP
(You can learn more about this technique in PentesterLab's training:
(From SQL Injection to Shell: PostgreSQL
edition)[https://pentesterlab.com/from_sqli_to_shell_pg_edition.html]

Using one of these methods, you should be able to gain command execution.

XML related attack

In this section, XML related attacks will be detailed. This type of attacks are
common with web services and with applications using XPath to retrieve a
configuration setting from a XML file (for example to know what backend they need
to use to authenticate a user based on the organisation's name provided).

Example 1

102/106

PentesterLab.com » Web for Pentester

https://pentesterlab.com/from_sqli_to_shell_pg_edition.html

Some XML parsers will resolve external entities and will allow a user controlling the
XML message to access resources: for example read a file on the system. The
following entity can be declared for example:

<!ENTITY x SYSTEM "file:///etc/passwd">

You will however need to add all the envelope around this to get it to work correctly:

<!DOCTYPE test [
 <!ENTITY x SYSTEM "file:///etc/passwd">]>

You can then simply use the reference to x: &x (don't forget to encode &) to get the
corresponding result inserted in the XML document during its parsing (server side).

In this example, the exploitation is directly done inside a GET request but it's more
likely that this type of requests are performed using a POST request in a traditional
web application. This issue is also really common with web services and is probably
the first test you want to do when attacking an application that accepts XML
messages.

This example can also be used to get the application to perform HTTP requests (by
using http:// instead of file://) and can be used as a port scanner. However, the
content retrieved is often incomplete since the XML parser will try to parse it as part
of the document.

103/106

PentesterLab.com » Web for Pentester

You can also use `ftp://` and `https://`You can also use `ftp://` and `https://`

Example 2

In this example, the code use the user input inside an XPath expression. XPath is a
query language to select nodes from an XML document. You can basically see the
XML document as a database and XPath as a SQL query. If you are able to
manipulate the query you will be able to retrieve element you should not be able to
normally access.

If we inject a single quote we can see the following error:

Warning: SimpleXMLElement::XPath(): Invalid predicate in
/var/www/xml/example2.php on line 7 Warning:
SimpleXMLElement::XPath(): xmlXPathEval: evaluation failed in
/var/www/xml/example2.php on line 7 Warning: Variable passed to
each() is not an array or object in /var/www/xml/example2.php on line
8

Like for SQL injection, XPath allows you to do boolean logic and you can try:

' and '1'='1 and you should get the same result.

' or '1'='0 and you should get the same result.

' and '1'='0 and you should not get any result.

104/106

PentesterLab.com » Web for Pentester

' or '1'='1 and you should get all results.

Based on these tests and previous knowledge of XPath, it's possible to get an idea
of what the XPath expression looks like:

[PARENT NODES]/name[.='[INPUT]']/[CHILD NODES]

To comment out the rest of the XPath expression, you can use a NULL BYTE (that
you will need to encode as %00). But as we can see in the XPath expression above,
we need to add a] to finish the syntax properly. Our payload now looks like
hacker']%00 (or hacker' or 1=1]%00 if we want all results).

If we try to find the child of the current node using the payload
'%20or%201=1]/child::node()%00, we don't get much information.

The problem here is that we need to got back up in the node hierarchy to get more
information. In XPath this can be done using parent::* as part of the payload. We
can now select the parent of the current node and display all the child node using
hacker'%20or%201=1]/parent::*/child::node()%00.

One of the node's value look like a password, we can confirm it by checking if the
node's name is password using the payload hacker']/parent::*/password%00.

105/106

PentesterLab.com » Web for Pentester

Conclusion

This exercise is an attempt to provide a really good beginner course for people who
want to start doing web application penetration testing. If you are interested by this
subject, you should check out our other exercises available at the following
address: https://www.pentesterlab.com/. Other exercises are more scenario based
and more realistic of typical web engagements. I hope you enjoyed learning with
PentesterLab.

106/106

PentesterLab.com » Web for Pentester

https://www.pentesterlab.com/
https://www.pentesterlab.com/

	Table of Content
	Introduction
	About this exercise
	License
	Syntax of this course
	The web application

	Introduction
	Security model of the web
	Web security risks
	Web technologies
	Architecture
	Client side technologies
	Server side technologies
	Storage backend

	The HTTP protocol
	A Client-server dialog
	Requests
	Methods
	Parameters
	HTTP Headers

	Responses
	HTTPs
	Listening to HTTP traffic
	Generating HTTP traffic
	Data encoding
	Code vs. data
	URL encoding
	Double encoding
	HTML encoding

	Cookies and sessions
	HTTP authentication
	Web services
	Web application security
	Client Side Security
	Bypassing Client Side Checks
	Server side

	Fingerprinting
	Fingerprinting the web server
	Browsing the web site
	Check for favicon.ico
	Check the robots.txt file
	Searching for directories and pages
	Directory/Pages busting
	Finding administration pages

	Generating errors
	Keep information

	Building useful tools
	Examples of Web vulnerabilities
	Cross-Site Scripting (XSS)
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7
	Example 8
	Example 9

	SQL injections
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7
	Example 8
	Example 9

	Directory traversal
	Example 1
	Example 2
	Example 3

	File include
	Example 1
	Example 2

	Code injection
	Example 1
	Example 2
	Example 3
	Example 4

	Command injection
	Example 1
	Example 2
	Example 3

	LDAP attacks
	Example 1
	Example 2

	Upload
	Example 1
	Example 2

	XML related attack
	Example 1
	Example 2

	Conclusion

