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ABSTRACT
Many browser-based attacks can be prevented by using sepa-
rate browsers for separate web sites. However, most users
access the web with only one browser. We explain the secu-
rity benefits that using multiple browsers provides in terms
of two concepts: entry-point restriction and state isolation.
We combine these concepts into a general app isolation mech-
anism that can provide the same security benefits in a single
browser. While not appropriate for all types of web sites,
many sites with high-value user data can opt in to app
isolation to gain defenses against a wide variety of browser-
based attacks. We implement app isolation in the Chromium
browser and verify its security properties using finite-state
model checking. We also measure the performance overhead
of app isolation and conduct a large-scale study to evaluate
its adoption complexity for various types of sites, demon-
strating how the app isolation mechanisms are suitable for
protecting a number of high-value Web applications, such as
online banking.

Categories and Subject Descriptors
H.4.3 [Information Systems Applications]: Communica-
tions Applications—Information browsers; K.6.5 [Management
of Computing and Information Systems]: Security and
Protection

General Terms
Security, Design, Verification

Keywords
Web Browser Architecture, Isolation, Web Application Secu-
rity, Security Modeling, Cross-Site Request Forgery, Cross-
Site Scripting

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’11, October 17–21, 2011, Chicago, Illinois, USA.
Copyright 2011 ACM 978-1-4503-0948-6/11/10 ...$10.00.

1. INTRODUCTION
Security experts often advise users to use more than one

browser: one for surfing the wild web and others for visit-
ing “sensitive” web sites, such as online banking web sites
[1, 2]. This advice raises a number of questions. Can us-
ing more than one browser actually improve security? If
so, which properties are important? Can we realize these
security benefits without resorting to the use of more than
one browser?

In this paper, we seek to answer these questions by crystal-
lizing two key security properties of using multiple browsers,
which we refer to as entry-point restriction and state isola-
tion. We find that these two properties are responsible for
much of the security benefit of using multiple browsers, and
we show how to achieve these security benefits in a single
browser by letting web sites opt in to these behaviors.

Consider a user who diligently uses two browsers for secu-
rity. This user designates one browser as “sensitive” and one
as “non-sensitive”. She uses the sensitive browser only for
accessing her online bank (through known URLs and book-
marks) and refrains from visiting the general Web with the
sensitive browser. Meanwhile, she uses only the non-sensitive
browser for the rest of the Web and does not use it to visit
high-value sites.

Using two browsers in this manner does have security
benefits. For example, consider the case of reflected cross-site
scripting (XSS). In a reflected XSS attack, the attacker crafts
a malicious URL containing an attack string and navigates
the user’s browser to that URL, tricking the honest web site
into echoing back the attack string in a dangerous context.
The attack has more difficulty succeeding if the user runs
more than one browser because the attack relies on which of
the user’s browsers the attacker navigates. If the attacker
navigates the user’s non-sensitive browser to a maliciously
crafted URL on the user’s bank, the attack will have no
access to the user’s banking-related state, which resides in
another browser.

From this discussion, one might conclude that isolation
of credentials and other state is the essential property that
makes using two browsers more secure. However, another
security property provided by using multiple browsers is
equally important: entry-point restriction. To illustrate
entry-point restriction by its absence, imagine if the attacker
could arbitrarily coordinate navigation of the users’ two
browsers and open an arbitrary bank URL in the sensitive



browser. Now, the attacker’s maliciously crafted URL and
attack string can be transplanted from the non-sensitive
browser to the sensitive browser, leading to disaster.

In reality, it is extremely difficult for Web attackers to
coordinate the navigation of two different browsers on the
users’ computer. This isolation between the two browsers
provides the entry-point restriction property. Namely, ses-
sions in the sensitive browser with an honest web site always
begin with a fixed set of entry points (e.g., the site’s home
page or a set of bookmarks) and then proceed only to URLs
chosen by the web site itself, not those chosen by a third
party. Because the bank’s entry points are restricted, the
attacker is unable to inject the attack string into the user’s
session with the bank.

State isolation, in turn, augments the security provided
by entry-point restriction when using two browsers. State
isolation plays a critical role, for example, in preventing
history sniffing [3, 4] and cache timing attacks [4, 5] because
these attacks do not rely upon the attacker navigating the
user’s browser to a maliciously crafted URL. State isolation
between browsers can even protect a user’s high-value session
data against exploits of browser vulnerabilities that give the
attacker control of the rendering process [6, 7]. In concert,
entry-point restriction and state isolation provide the lion’s
share of the security benefits of using two browsers.

In our example above, we use a single high-value site to
illustrate the security benefit of isolation using two browsers,
but the isolation benefits extend naturally to accessing mul-
tiple sites, each in their own browser. In this paper, we show
that we can realize these security benefits within a single
browser by allowing web sites to whitelist their entry points
and request isolated storage. This is not a pinpoint defense
against a specific attack but rather a general approach that
has benefits in a number of attack scenarios.

The security benefits of our mechanism do come with a
compatibility cost for certain types of web sites, as it places
some limitations on deep links and third-party cookies. To
avoid disrupting existing web sites, we advocate deploying
our mechanism as an opt in feature. Furthermore, we hy-
pothesize and experimentally verify the types of web sites
that are suitable for our mechanism. Our experiments mea-
sured the number of entry points used by popular sites in a
study of 10,551 browsers running Mozilla’s Test Pilot plat-
form [8]. Over 1 million links were included in our study.
We discovered that many security sensitive sites such as on-
line banking applications can easily deploy our mechanisms.
However, highly social or content-driven applications such as
Facebook and New York Times will have difficulties adopting
our proposal.

To evaluate the security benefits of app isolation, we model
our proposals in the Alloy language, leveraging previous work
on modeling web security concepts in Alloy [9]. We enrich our
existing Alloy model with new concepts, such as EntryPoints
and RenderingEngines, to model the essential concepts in
our proposal. Our analysis revealed two issues with our
initial proposals: one related to HTTP redirects and one
related to an unexpected interaction between entry-point
restriction and state isolation. We repair these errors and
validate that our improved proposals pass muster with Alloy.

We view our main contributions in this paper as follows.

• We crystallize the security benefits of using multiple
browsers into two basic concepts.

• We provide a security mechanism that grants a sin-
gle browser the security benefits of multiple browsers,
compatible with certain types of existing sites.

• We validate the security of our mechanism using formal
modeling, adjusting our design to patch uncovered
vulnerabilities.

• We evaluate the compatibility of our mechanism using
Mozilla’s Test Pilot platform. We are the first to utilize
this platform to conduct an academic study.

1.1 Organization.
The rest of this paper is organized as follows. Section 2

presents related app isolation work. Section 3 identifies the
key security benefits of using multiple browsers. Section 4
discusses how browsers can identify apps that have opted
in to our proposal. Section 5 and Section 6 describe our
design in detail. Section 7 evaluates our proposal in terms of
its security, complexity to adopt, and performance, and we
conclude in Section 8.

2. BACKGROUND
In this section, we examine how the security properties of

using multiple browsers have surfaced in related work and
compare them to our proposal.

2.1 Isolation with multiple browsers
For users who choose to browse the web using multiple

browsers, site-specific browsers (SSBs) can make the brows-
ing experience simpler and more convenient. SSBs provide
customized browsers that are each dedicated to accessing
pages from a single web application. Examples of SSBs
include Prism [10] and Fluid [11].

SSBs are simply special-purpose browsers and can pro-
vide the security benefits of using multiple general-purpose
browsers. However, SSBs can become difficult to manage
when users interact with and navigate between a large num-
ber of different web applications. We show that a single
browser can realize the security benefits of SSBs without the
management burden on the user. For example, our proposal
allows users to seamlessly and securely follow a link from
one app to another, even in a single browser tab.

2.2 Isolation within a single browser
The concept of finer-grained isolation inside a single browser

has been explored by many researchers. However, prior work
has not identified the essential factors needed for a single
browser to achieve the same security benefits as using multi-
ple browsers.

Recent browsers have begun employing sandbox technol-
ogy that protects the local file system from attacks that
exploit browser vulnerabilities. For example, Internet Ex-
plorer on Windows Vista introduced Protected Mode [12],
which protects the local file system from being modified
by a compromised rendering engine. The Google Chrome
browser’s sandbox additionally protects the local file system
from being read by a compromised by a rendering engine [6].
Unfortunately, neither of these sandboxing technologies pro-
tect web application state, such as cookies and local storage
data, from being accessed by a compromised rendering en-
gine.

The OP browser [13] isolates plugins from state associ-
ated with other applications by enforcing restrictions on the



cross-origin request API exposed to plugins. The Gazelle
browser [14] goes a step further by restricting the cross-
origin request API for the entire rendering engine. Under
the Gazelle approach, a web application’s state is only vis-
ible to the rendering engine containing it. This prevents a
malicious web entity from compromising its own rendering
engine to gain access to the state of other web applications.
However, because Gazelle denies rendering engines from
requesting cross-origin resources unless their MIME type
indicates a library format such as JavaScript or Cascading
Style Sheets (CSS), it imposes a compatibility cost on many
web sites [15].

One approach that can mitigate the compatibility costs of
restricting the cross-origin request API is to allow an appli-
cation to explicitly declare the URLs that compose it. One
example of this approach is the Tahoma browser [16], which
allows applications to specify a manifest file listing which
URLs should be included in the same protection domain.
Tahoma uses a separate state container for each application,
so state associated with one application will be inaccessible
in another. Although Tahoma realized the importance of iso-
lating web application state, it did not incorporate the other
benefit of using multiple browsers: restricting non-sensitive
web sites from directing the user to a sensitive URL.

OMash [17] only attaches cookies to same-origin requests,
effectively isolating state within a particular site. Each
new entry into a site creates a new session. This approach
mitigates reflected XSS, cross-site request forgery (CSRF),
and click-jacking, since another site cannot hi-jack an existing
session with a hyperlink or iframe. However, the drawback
of OMash lies in its inability to maintain user state across
multiple browsing sessions.

Content Security Policy [18] attempts to mitigate XSS by
allowing web sites to only execute scripts from whitelisted
external JavaScript files. SOMA [19] aims to alleviate XSS
and CSRF by making the host of web content mutually
approve the content request with the web content embedder.
Unfortunately, both of these defenses are geared to counter
individual attacks such as XSS and CSRF. They do not
achieve the full security benefits as using multiple browsers,
such as defenses against rendering engine exploits.

In contrast, our work aims to capture the same underlying
properties of using separate browsers for sensitive web apps,
gaining the security benefits in a single browser.

3. SECURELY ISOLATING WEB SITES
In this section, we investigate exactly which security ben-

efits can be achieved by visiting sensitive web sites in a
different web browser than non-sensitive web sites. We clas-
sify many common browser-based attacks and show that a
large number of them can be mitigated through the use of
multiple browsers. We then introduce two new mechanisms
in a single browser that can be used to achieve these same
benefits, for particular web sites that choose to opt in and
accept the compatibility implications.

3.1 Benefits of Multiple Browsers
Suppose a user wishes to protect certain sensitive web sites

from more dangerous ones by using two browsers, A and B.
To achieve this, she must abide by the following rules:

1. Only type in passwords for sensitive web sites with
Browser A. This rule ensures that user state for the
sensitive web sites are stored only in Browser A.

2. Never type in URLs or click on bookmarks to non-
sensitive web sites with Browser A, and never type into
Browser A URLs received from non-sensitive web sites
or other untrusted sources. This rule prevents Browser
A from leaking any sensitive information to Browser B
and prohibits Browser B from contaminating sensitive
states in Browser A.

If the user strictly abides by the rules above, all sensitive
state would reside in Browser A, isolated from non-sensitive
web sites and unable to leak to Browser B. Furthermore,
the integrity of Browser A is maintained because untrusted
content in Browser B cannot infect Browser A, preventing
attacks such as reflected XSS.

These rules prevent the “cross-origin” versions of the at-
tacks listed in Table 1. We classify attacks as “cross-origin”
if the attack is launched from a different origin than the vic-
tim origin, as opposed to “same-origin” attacks (such as one
Facebook page trying to mount a CSRF attack on another
Facebook page). Using a separate browser does not prevent
the same-origin versions of these attacks, nor same-origin
only attacks such as stored XSS, because the attacker resides
in the same browser as the victim.

We provide a more thorough analysis of the cross-origin
attacks from Table 1 below. We assume the attacker wishes to
attack a victim web site to which the user has authenticated
and can lure the user into visiting a malicious web site on a
different origin. Furthermore, we assume that the user uses
separate browsers according to the rules above.

• Reflected XSS – In a reflected XSS attack, the at-
tacker lures the user into visiting a malicious URL
inside the non-sensitive browser. This URL will allow
the attacker’s script to execute inside the victim’s ori-
gin. However, because the user is authenticated to the
victim site in the sensitive browser, the attacker’s script
will not have access to the user’s session.

• Session fixation – In a session fixation attack, the
attacker includes a known session ID inside a victim
URL, then lures the user into visiting this URL and
tricks her into logging in. Once the user is logged in,
the attacker can freely impersonate the user with the
shared session ID. However, because the user only types
her password into the sensitive browser, the attack will
fail.

• Cross-origin resource import – In a cross origin
resource import attack, the attacker’s page requests a
sensitive resource from the victim’s origin as a script
or style sheet. If the user were authenticated to the
victim site in the same browser, this request can leak
confidential information to the attacker. However, the
user is authenticated instead in the sensitive browser,
thereby foiling the attack.

• Click-jacking – Click-jacking attacks overlay a trans-
parent iframe from a victim page over a part of the
attacker’s page where the user is likely to click. This
aims to trick the user into clicking somewhere on the



Cross-origin Attacks Entry-point Restriction State Isolation Separate browser
Reflected XSS X X

Session Fixation X X
Cross-Origin Resource Import X X X

Click-jacking X X
CSRF X X X

Visited Link Sniffing X X
Cache Timing Attack X X

Rendering Engine Hi-jacking X X

Table 1: Cross-origin attacks mitigated by entry-point restriction, state isolation, and using separate browsers.
Same-origin attacks, such as stored XSS, are not mitigated.

victim’s page (e.g., the delete account button) with-
out realizing it. Because the user is authenticated in
the sensitive browser, clicking on the transparent vic-
tim iframe in the non-sensitive browser will cause no
damage.

• Cross-site request forgery – In a traditional CSRF
attack, the adversary makes subresource requests within
a page she owns in an attempt to change the user’s state
on the victim’s server. This attack succeeds because
the user’s credentials are attached to the attacker’s
subresource request. However, because the user au-
thenticates only in the sensitive browser, the malicious
request will not have a cookie attached, rendering it
harmless.

• Visited link sniffing – The attacker’s web site might
attempt to sniff the user’s browsing history by drawing
visited links in a different color or style than unvisited
ones, and then using JavaScript or CSS to discover
which have been visited. Although a possible mitiga-
tion has been proposed and adopted by several major
browsers [20], new attacks have been discovered that
can detect browsing history despite the defense [21].
However, if the user uses separate browsers, these
browsers have different history databases, so a web
site in the non-sensitive browser is unable to discern
the browsing history of the sensitive browser.

• Cache timing attack – Similar to visited link sniffing
attacks, an attacker can measure the time to load a
victim resource to determine if the user has visited
it [4, 5]. Different browsers have different caches for
their web resources, so web sites in the non-sensitive
browser cannot detect cache hits or misses in the sensi-
tive browser.

• Rendering engine hi-jacking – A powerful attacker
might exploit a vulnerability in the browser’s rendering
engine to hi-jack its execution. For browsers with
a single rendering engine instance (e.g., Firefox and
Safari), this would let the attacker access all the user’s
state, such as the victim site’s cookies and page contents.
These attacks still apply to browsers with multiple
rendering engine instances, if they rely on the rendering
engine to enforce the Same-Origin Policy (e.g., Chrome
and IE8). However, if the user logged in to the victim
site with a different browser, the victim’s cookies and
sensitive pages will reside in an entirely different OS
process. Assuming the exploited rendering engine is

sandboxed, the attacker’s exploit is unable to access
this process.

3.2 Site Isolation in a Single Browser
As shown in the previous section, using a dedicated browser

to visit certain sites mitigates a significant number of web
attacks. This observation raises a question: which properties
of browsing with a single browser make it vulnerable to these
attacks? We believe the answer to this question can be
summarized in three points:

1. Malicious sites are free to make requests to vulnerable
parts of victim’s site.

2. Malicious sites can make requests that have access to
the victim’s cookies and session data.

3. Malicious sites can exploit the rendering engine for
direct access to in-memory state and to stored data
from the victim site.

Our key observation is that these abilities are not funda-
mental flaws of browsing with a single browser but rather
weaknesses of current browsers. We believe that for many
types of web sites, it is possible to simulate the behavior of
multiple browsers with a single browser by solving each of
these weaknesses. These changes come with a compatibil-
ity cost, however, because benign third-party sites are also
prevented from accessing the user’s cookies. We evaluate
the complexity that different types of sites face for adopting
these changes in Section 7.2.

In the next three sections, we introduce mechanisms for
removing these limitations in a single browser. First, we pro-
vide a means for web sites to opt in to this protection if they
accept the compatibility implications. Second, we prevent
untrusted third parties from making requests to vulnerable
parts of these web sites. Third, we isolate the persistent and
in-memory state of these sites from other sites. Because our
approach works best with “app-like” web sites that contain
sensitive user data and few cross-site interactions, we refer
to this approach as app isolation.

4. IDENTIFYING ISOLATED WEB APPS
App isolation can provide a web site with the security ben-

efits of running in a dedicated browser, but it comes at some
compatibility cost. Isolating cookies and in-memory state
not only prevents malicious web sites from compromising
sensitive data, it can also hinder legitimate web sites from
sharing information. For example, Facebook Connect[22] lets



web sites access visitors’ identifying information via Face-
book, which would not work if Facebook was isolated in
a separate browser. To remain compatible with web sites
that desire this sharing, we employ an opt-in policy that lets
web developers decide whether to isolate their site or web
application from the rest of the browser.

We must choose the opt-in mechanism carefully to avoid
introducing new security concerns, and we must consider
the granularity at which the isolation should take effect. In
this section, we first show the consequences of an inadequate
opt-in mechanism using HTTP headers. Then, we describe a
viable origin-wide approach with host-meta, and refine it to
support sub-origin level web applications with manifest files.

Bootstrapping with HTTP headers.
As a straw man, we first consider identifying an isolated

app using a custom HTTP header (e.g., X-App-Isolation: 1).
If the browser receives this header on an HTTP response,
the browser treats all future responses from the origin as
belonging to the isolated app.

The primary disadvantage of this approach is that it does
not verify that the given response has the privilege to speak
for the entire origin. This lack of verification lets owners
of portions of an origin (e.g., foo.com/~username/) opt the
entire origin in to app isolation. A malicious sub-domain
owner can use this mechanism to prevent desirable sharing on
other parts of the origin, or he can misconfigure the app (e.g.,
listing a non-existent entry point) to perform a denial-of-
service attack. Worse, bootstrapping with a custom HTTP
response header might not enforce the policy for the initial
request sent to the server, opening a window of vulnerability.

Bootstrapping with Host-meta.
To avoid attacks that grant the privileges of the entire

origin to each resource, the browser can instead bootstrap app
isolation using a file at a well-known location that can only be
accessed by the legitimate owner of the origin. The host-meta
mechanism is designed for exactly this reason [23]. With host-
meta, the owner of the origin creates an XML file containing
app isolation meta data located at /.well-known/host-meta.
This meta data can include configuration information, such
as a list of acceptable entry points. Because host-meta should
be controllable only by the legitimate owner of the origin,
an adversary controlling only a directory will not be able to
influence the app isolation policy for the entire origin.

It is essential to retrieve host-meta information through a
secure channel such as HTTPS. Otherwise, an active network
attacker can replace the host-meta entries with bogus URLs,
allowing the attacker to conduct denial-of-service or other
misconfiguration attacks.

One downside of bootstrapping with host-meta is that is
has poor performance because an additional round trip is
required to fetch a resource if the host-meta file is not in the
cache.

Bootstrapping with Manifest File.
The above proposals work at the granularity of an origin.

However, it is also possible to isolate web apps at a finer
granularity without violating the security concerns of “finer-
grained origins” [24].

In the Chrome Web Store, web application developers
package their applications using a manifest file [25]. This
method of packaging web applications is becoming common;

for example, Mozilla’s Open Web Applications are also pack-
aged using a such file [26]. The file includes a list of URL
patterns that comprise the application, together with other
meta data such as requested permissions. The manifest file
provides extra context to the browser for how to treat the
app, allowing it to enforce policies that might break ordi-
nary web content. The Chrome Web Store also supports
“verified apps [27],” in which the manifest file’s author demon-
strates that she has control over all origins included in the
application’s URL patterns.

We use additional syntax in the manifest to let applications
in the Chrome Web Store opt in to app isolation. The URL
patterns in the manifest might or might not span an entire
origin, which would allow a site like Google Maps (e.g.,
http://www.google.com/maps) to opt into isolation features
without affecting the rest of the origin. The Chrome Web
Store already provides a mechanism for verifying that the
manifest is provided by the web site author, which we leverage
to prevent a malicious manifest file from bundling attacker
URLs in the same app as a victim site.

The reason this does not run afoul of the typical security
concerns of finer-grained origins is that our state isolation
effectively separates the application’s pages from the rest of
the web, including non-application pages in the same origin.
Origin contamination via scripts or cookies is blocked because
an application page and a non-application page do not share
the same renderer process or cookie store.

Both origin-level isolation using host-meta and application-
level isolation using manifest files are viable opt in mecha-
nisms. We leave it to browser vendors to decide on which
method they deem appropriate. In the remainder of this
paper, we refer to the unit of isolation as an app, whether
designated as an origin or a collection of URLs in a manifest.

5. ENTRY-POINT RESTRICTION
Using multiple browsers securely requires the user to re-

frain from visiting a sensitive app at a URL that could be
constructed by an attacker. Instead, the user always visits
the app in the sensitive browser from a known starting point.
Simulating this behavior with a single browser requires an
intuitive way of visiting URLs of sensitive apps without com-
promising security. Our proposal for Entry-point Restriction
provides a way to safely transition between sensitive and
non-sensitive pages in a single browser, without altering the
user’s behavior.

In this section, we present the rules for entry-point re-
striction and discuss the challenges for selecting appropriate
entry points. Table 1 lists attacks that are prevented by
entry-point restriction.

5.1 Design
Under the entry-point restriction policy, we define an entry

point to be a landing page of an app designated by the
app’s owner. Any app may choose to opt into entry-point
restriction by providing at least one entry point.

Once an app opts into entry-point restriction, the browser
may load a resource from the app if and only if at least one
of the following statements holds true.

• The resource is requested by a page inside the app.

• The URL of the resource is a valid entry point for the
app.



non-entry URLs
entry point URLs

a.com b.com

logo.png
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favicon.ico

Figure 1: Entry-point Restriction

Figure 1 illustrates how entry-point restriction works in
practice. Suppose a.com hosts its company logo at a.com/

logo.png, and specifies an entry point at a.com/index.html.
Meanwhile, b.com/index.html includes a hyperlink to a.

com/index.html and embeds an image with the source at-
tribute of a.com/logo.png. In this scenario, the user is able
to follow the hyperlink because it points to a valid entry
point. However, the logo will fail to load because it is a cross
origin request to a non-entry-point URL.

Choosing entry points.
Entry points are whitelisted URLs or URL patterns that

the app’s owner trusts to load safely even when requested by
an attacker’s page. Therefore, it is crucial to choose these
URLs with care. The goal is to select common landing pages
that do not present opportunities for the attacker to exploit
the user’s credentials. We offer the following guidelines for
selecting entry points.

• An entry point URL should cause no sensitive state
changes, because an attacker may request it with the
user’s credentials.

• An entry point URL pattern should be as tightly con-
strained as possible, reducing the opportunity for at-
tackers to place malicious code in the URL.

• An entry point URL should not return confidential
information in a form that could be accessed on a
cross-origin page, such as JSON.

In most cases, the default landing page for an app meets
these guidelines. Many sites expect their users to arrive via
multiple landing pages, creating a need to support multiple
entry points. For example, an online banking site may have
an English login page and a French login page. For additional
flexibility, we also allow web sites to use wildcard charac-
ters in their entry point URLs (e.g., www.a.com/*/ where
* represents any number of non-‘/’ characters). Allowing
wildcards trades off some security benefits for compatibility
because the number of wildcard characters and entry points
is directly correlated with the size of the app’s attack surface.
However, this is still an improvement over having no such
policy. We recommend that app owners restrict their policies
as tightly as possible and use wildcards only when necessary.

It is important to note that not all web sites are well-
suited for entry-point restriction. Some sites depend heavily

on deep links to content, such as socially integrated sites
like Facebook or content-oriented sites like New York Times.
These sites will have a difficult time adopting the policy,
because it is extremely difficult to identify all the URLs that
legitimate sites may link to. We show in Section 7.2 that
other types of sites, such as online banks, are amenable to
these restrictions and can benefit from entry-point restriction.

Sub-resource restrictions.
By default, entry-point restriction must deny sub-resources

at non-entry-point URLs from loading. This will prevent
vulnerabilities such as reflected XSS and CSRF; however, it
may also affect legitimate web pages. For example, loading a
non-entry-point image will fail despite being typically a safe
action.

Fortunately, this usability constraint can be alleviated.
Entry-point restriction is only necessary because malicious
requests will have the user’s authentication tokens attached
to them. Section 6 describes how State Isolation can be
used to isolate these authentication tokens from sub-resource
requests. When used in conjunction with state isolation,
entry-point restriction can safely allow sub-resources at non-
entry-point URLs.

5.2 Implementation
We implemented a proof-of-concept entry-point restriction

mechanism in the Chromium browser. The entire system
consists of less than 100 lines of C++ code. Our implemen-
tation enforces entry-point restriction inside Chromium’s
WebKit rendering engine. More specifically, we modified the
CanDisplay() function of SecurityOrigin, which gets called
before every web resource request. If the URL of a web
resource violates the entry-point restriction policy, WebKit
will not issue the network request.

Storing entry points.
Like most web resources, it is desirable for the browser

to cache entry-point restriction information for performance.
The exact caching method may differ depending on how apps
opt into entry-point restriction.

If apps use host-meta to bootstrap app isolation, browsers
could cache this information like conventional web resources.
Users should be able to clear their app isolation information
the same way they clear cookies or browsing histories. Most
modern browsers offer users with private browsing features
that allow them to browse without persistent storage [28].
To be compatible with these private browsing features, the
host-meta information in such modes must be treated like
cookies or browsing history, not being written to disk.

If apps instead use app manifests (such as the installed
apps from the Chrome Web Store), the policies are stored
in the browser’s persistent app meta data. This essentially
permits the browser to permanently cache the app isolation
policies as long as the application is installed. To update the
policy, developers can use the standard app update process.

6. STATE ISOLATION
The remaining security benefits of using multiple browsers

shown in Table 1 result from isolating an app’s state from
other web sites. In traditional browsers, attackers can try
to take advantage of persistent state, such as using an app’s
cookies in a CSRF attack. They can also try to directly



access in-memory state by exploiting the browser’s rendering
engine and then inspecting memory.

We can simulate the state benefits of using a separate
browser for an app with a single multi-process browser. This
requires isolating both the in-memory and persistent state of
the app from other web sites, using the process and storage
architectures of the browser.

6.1 Design
Once the browser identifies the URLs comprising an iso-

lated app (as discussed in Section 4), it can ensure instances
of those pages are isolated in memory and on disk.

In-Memory State.
Any top-level page loaded from a URL in the app’s manifest

must be loaded in a renderer process dedicated to that app.
Any sub-resource requests are then made from the same
process as the parent page, even if they target URLs outside
the app’s manifest.

We treat sub-frames in the same manner as sub-resources.
While this may open the app’s process to attacks from a
non-app iframe, the app does have some control over which
iframes are present. Similarly, an app URL may be requested
as an iframe or sub-resource outside the app process. The
potential risk of this approach, that of framing attacks, is
mitigated by persistent state isolation as described below,
which ensures that such requests do not carry the user’s
credentials. This approach has the same security properties
as loading the app in a separate browser.

Top-level pages from all other URLs are not loaded in
the app’s renderer process. Combined with an effective
sandbox mechanism [6], this helps prevent an exploited non-
app renderer process from accessing the in-memory state
present in the app’s process.

The browser kernel process can then take advantage of
the process isolation between apps and other sites to en-
force stricter controls on accessing credentials and other
resources. HTTP Auth credentials, session cookies, and
other in-memory state stored in the browser kernel is only
revealed to the app’s process.

Persistent State.
The browser kernel also creates a separate storage partition

for all persistent state in the isolated app. Any requests
from the app’s renderer process use only this partition, and
requests from other renderer processes do not have access to
it. The partition includes all cookies, localStorage data, and
other local state.

As a result, a user’s session within an app process is not
visible in other renderer processes, even if a URL from the
app is loaded in an iframe outside the app process.

The storage partition can also isolate the browser history
and cache for an app from that for other web sites. This can
help protect against visited link and cache timing attacks, in
which an attacker tries to infer a user’s specific navigations
within an app.

Combining with Entry-point Restriction.
When both entry-point restriction and state isolation are

used together, the mechanisms complement each other and
we can relax one of the restrictions for entry-point restriction.
Specifically, a non-app page can be permitted to request
non-entry-point URLs for sub-resources and iframes. This

mimics the behavior when using a separate browser for the
app, and it still protects the user because credentials are
safely restricted to the app process.

6.2 Implementation
We implemented state isolation for apps in Chromium with

roughly 1400 lines of code. For in-memory state isolation,
Chromium already offers stricter process separation between
installed web apps from the Chrome Web Store than most
web sites. Pages from URLs in an app manifest are loaded
in a dedicated app process. In the general case, Chromium
avoids putting pages from different origins in the same process
when possible, but cross-origin pages can share a process in
many cases to avoid compatibility concerns [29].

However, we needed to strengthen Chromium’s process
isolation to more thoroughly prevent non-app pages from
loading in the app’s process. First, we needed to ensure
that apps are not placed in general renderer processes if
the browser’s process limit is reached. Second, we needed
to ensure navigations from an app URL to a non-app URL
always exit the app’s process.

For persistent state isolation, we changed Chromium to
create a new URL context (a subset of the user’s profile data)
for each isolated app. The cookies, localStorage data, and
other persistent information is stored on disk in a separate
directory than the persistent data for general web sites. The
browser process can ensure that this data is only provided
to renderer processes associated with the app, and not to
general renderer processes.

7. EVALUATION
In this section, we evaluate state isolation and entry-point

restriction in three ways. First, we perform a formal analysis
for the security properties of these mechanisms. Second,
we experimentally assess the feasibility of various web sites
adopting these mechanisms. Finally, we quantify their per-
formance overhead relative to using one or multiple browsers.

7.1 Security
We used model-checking to evaluate the combined security

characteristics of app isolation using both state isolation and
entry-point restriction. Our approach consists of defining the
security goals of app isolation, then modeling our implemen-
tation, its security goals, and attacker behavior in the web
security framework described in [9] using Alloy [30, 31], a
declarative modeling language based on first-order relational
logic. We then analyze whether the expressed goals were met
with the help of the Alloy analyzer software.

Security Goals.
The broad security goal of both our mechanisms are iso-

lation. Isolation protects sensitive resources belonging to
the app, such as non-entry URLs, scripts, and user creden-
tials, against unauthorized use by web pages or scripts not
belonging to the app. We distill two isolation goals which, if
met, will provide the app with defenses against the attacks
described in Section 3.1. (This property holds because the
attacks either require an attacker to gain access to exploitable
URLs within the app or use sensitive state from the app, or
both.)

These goals are modeled by Alloy assertions (logical pred-
icates whose consistency with the model may be checked)
analogous to the following statements:



1. Browser contexts (pages or scripts) originating outside
an app will not read or overwrite state issued within
the app, such as credential cookies.

2. Browser contexts (pages or scripts) originating outside
an app will not obtain a non-entry resource within the
app.

Isolation Mechanisms.
We model entry-point restriction as an Alloy fact (a logic

constraint which always holds), reproduced below. The fact
states that the browser will not issue any cross-origin requests
for a non-entry resource in an entry-restricting origin.

fact StrictEntryEnforcement {
all sc:ScriptContext |
sc.location=StrictEntryBrowser implies
no areq:sc.transactions.req |

areq.path=NON_ENTRY and
isCrossOriginRequest[areq] and
isRequestToStrictEntryOrigin[areq]

}}

To model state isolation, we refined the browser model
of [9] by adding a set of RenderingEngines associated with
each Browser. Each RenderingEngine then runs a set of
ScriptContexts, as shown in the Alloy signatures below:

sig Browser extends HTTPClient {
engines: set RenderingEngine }

sig RenderingEngine {
contexts: set ScriptContext,
inBrowser : one Browser }

The actual state isolation is modeled by Alloy facts. The
first fact states that each cookie in the model is tagged with
the RenderingEngine of the ScriptContext in which it was
first received. The next states that access to cookies are
restricted to only ScriptContexts from an origin matching
the domain setting of the cookie executing in a Renderin-

gEngine matching the cookie tag.
Our app container model also includes a browser behavior

relevant to app isolation, as described by Section 6.1: it
associates a newly opened ScriptContext with the existing
RenderingEngine of an app if the top-level URL of the new
ScriptContext is within the app.

Finally, our modeling assumes that users will behave con-
servatively within an isolated app window, meaning attack-
ers cannot get their ScriptContexts in the same Renderin-

gEngine as an app when separate RenderingEngines exist.

Web and Rendering Engine Attacker.
We then modeled the abilities of the attacker. As described

in [9], the abilities of web attackers include ownership of a
web server by which they can introduce ScriptContexts
under their control into the user’s browser. Our modeled
“rendering engine attackers” can additionally create scripts
that compromise the RenderingEngine of the user’s browser,
giving them arbitrary control over other ScriptContexts on

request

non-entry URLs
entry point URLs

bank.com attack.com

redirect
(violation)

Figure 2: Entry-point restriction violation found by
Alloy model.

the same RenderingEngine, such as reading cookies, creating
new ScriptContexts, sending requests, etc. However, our
model assumes that storage isolation is enforced by an entity
outside the rendering engines, like a browser kernel. Thus, the
“rendering engine attacker” cannot compromise the storage
isolation mechanism.

Entry Restriction Results.
We first checked our implementation of entry restriction

against the stated security goals and found that assertion 2
above was violated. We confirmed that this violation also
existed in our implementation at that time and note (with
some sheepishness) that the implementation bug resembles
ones previously found by [9] in Referer validation defenses
proposed by [32].

The violation, illustrated in Figure 2, occurs because of
HTTP redirects. Suppose origin bank.com is a victim origin
that uses entry-point restriction, and origin attack.com is
a external origin that does not use entry-point restriction.
A page created by bank.com is allowed by the browser to
cause a request for a non-entry resource in attack.com, since
attack.com does not use entry-point restriction. attack.com
may then issue a redirect to the browser telling it to find the
requested resource back at bank.com. The browser will then
re-issue the request, now to bank.com, which will be granted
by bank.com because the request was initiated by a context
owned by bank.com. This violates the integrity goal because
the external origin attack.com plays a role in redirecting the
request back to bank.com, thus “requesting” the non-entry
resource.

To fix this violation, we updated our implementation to
keep track of all redirects experienced by a request and
to refrain from sending a request for a non-entry resource
to an entry-isolating domain if any external domains are
recorded in the request’s redirects. We verified that the
model containing this fix now upholds the previously violated
integrity assertion, up to the finite size we tried (up to 10
NetworkEvents, which are either requests or responses).

App Isolation Results.
We then used the model to check both app mechanisms

(entry-point restriction and state isolation) and found that
neither mechanism individually was able to uphold the secu-
rity goals in the presence of the rendering engine attacker. For
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owner: bank.com
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Figure 3: Isolation violation found by Alloy model.
Request 4 to a non-entry URL, containing creden-
tials issued within the app, is granted if entry-point
restriction is absent or incorrect.

entry-point restriction without state isolation, there is only a
single RenderingEngine for all ScriptContexts, letting the
attacker trivially violate assertion 1 above by compromising
the RenderingEngine and accessing cookies issued by the
app. For state isolation without entry-point restriction, the
Alloy analyzer found a violation of assertion 2 above that
is very similar to the violation we found in the model with
both mechanisms. We will therefore describe both results
together in the next paragraphs.

When checking the model with both mechanisms, the Alloy
analyzer found no violations to assertion 1 above but did
find a violation for assertion 2. This violation occurs because
our implementation at the time did not consider the app
container as part of its notion of “same-origin” when applied
to entry-point restriction. Figure 3 illustrates this violation,
as well as the violation found for state isolation without
entry-point restriction. The scenario is as follows:

Alice opens a session with bank.com as an app with a ded-
icated app renderer and receives credentials. Alice also visits
attack.com with the browser’s ordinary renderer, causing
attack.com to send a script which compromises the ordinary
renderer. The attacker creates a bank.com script context
in the ordinary renderer. Then the attacker causes the
bank.com script context to open a new window with top-
level URL pointed at an exploitable non-entry URL within
the bank.com app. This new window will open in the app
renderer, because its initial URL is within the app, and its
request for the non-entry URL will pass entry point checks,
because the script context which caused the request is “same-
origin” (owned by bank.com). Similarly, the request will also
be sent if entry-point restriction is absent. This last request
thus causes the attack to succeed.

The discovery of this vulnerability underscores two points
regarding app containers. The first is that both entry-point
restriction and state isolation mechanisms are necessary to
stop a rendering engine attacker. The second is that the same-
origin policy must be extended to include app containers. In
effect, app containers divide a previously atomic origin into
two new origins, one inside and one outside the container. As
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Flixster (13)

Wells Fargo (56)

Gmail (239,957)

Capital One (33)

Grooveshark (90)

Bank of America (477)

Facebook (1,019,100)

New York Times (12,503)

Last FM (5,289)

Figure 4: Entry points to popular sites observed
by 10,551 Mozilla Test Pilot browsers. Numbers in
parentheses indicate the total number of incoming
links observed.

such, the entry-point restriction policy should have rejected
the last request in our scenario, because its source was outside
the app container and its target was inside. We implemented
this updated notion of same-origin in our model and verified
that both assertions were now upheld, up to the finite sizes
we tried, again up to 10 NetworkEvents.

7.2 Complexity of Adoption
Entry-point restriction requires web sites to identify all

URLs that they wish make public to other web sites. Highly
socially integrated sites like Facebook or content-oriented
sites like New York Times will have difficulty adopting entry-
point restriction due to the inherent complexity in capturing
all the possible entry points. On the other hand, we believe
non-social web sites such as online banking applications will
have an easier time identifying valid entry-points, making it
practical to deploy entry-point restriction.

To gain additional insight into the effort required for dif-
ferent web sites to adopt entry-point restriction, we used
the Mozilla Test Pilot platform [8]. Mozilla Test Pilot is
a Firefox extension installed on more than 3 million active
Firefox browsers. Our evaluation was performed on 10,551
of those browsers over a period of 3 days. In our study, we
simulated entry-point restriction for 9 web sites shown in
Figure 4. These sites consist of popular email and web appli-
cations, online banking pages of major financial institutions,
news and social networks, and popular Chrome Web Store
applications.

For each site, we gathered URL hashes of all incoming
links to the site that appear on all pages that Test Pilot
Browsers visited. Each incoming link represents either an
actual HTML link or an embedded resource pointing to
the site (e.g., a.com/logo.png would be an incoming link
to a.com). Our results demonstrate several ideas. First,
they verify our hypothesis that web sites that encourage
the sharing of content will have a difficult time opting in
to entry-point restriction (e.g., New York Times, Facebook,
and Last.fm). Second, web sites with no intention of sharing



content can opt in to entry-point restriction with relatively
few entry points (e.g., Wells Fargo, Capital One and Flixster,
a Chrome Web Store application). For certain sites such as
Gmail and Bank of America, the compatibility with entry-
point restriction is less clear. While 10 entry points can
cover up to 95 percent of the incoming links, fully covering
all incoming links appears to be a non-trivial task. For
Gmail, we suspect this to be due to Gmail widgets, multiple
login URLs (e.g., mail.google.com/mail/u/0/), and web
mail portals from numerous organizations hosted by Gmail
(e.g., mail.google.com/a/west.cmu.edu/). It is difficult to
confirm this hypothesis from the data set, as we only collected
hashes of the URLs to protect user privacy. For the online
banking application for Bank of America, each entry point
path is valid at a number of regional load-balancing domains,
thus accounting for the large number of total entry point
URLs.

Web applications that consist of multiple subdomains some-
times face an interesting challenge, if some subdomains are
more amenable to app isolation than others. For example, a
bank may have some of its login-guarded functionality on a
online subdomain, while also having a separate creditcards
subdomain with significant numbers of entry points. If pages
on the creditcards subdomain can also recognize when a
user is logged in, then it is difficult to isolate the two subdo-
mains from each other. Such apps may either face difficulties
adopting app isolation or be forced to specify less precise
entry points.

To assist web site owners with identifying valid entry points
and determining whether app isolation is suitable for their
site, we propose a report-only mode similar to that of Content
Security Policy [33]. Instead of enforcing a policy violation,
report-only mode will send a violation report to the app’s
server. Report-only mode can thus be used to generate a
suitable policy file that avoids false positives.

Web developers interested in adopting app isolation should
consider the specific feature trade-offs they will be making.
Their apps should have limited deep incoming links as entry
points. They should not rely on authenticated resources
from third parties, and they should not depend on their own
authenticated resources being loaded on third party sites.
Overall, we found that certain types of sites, including several
online banks, do appear to be good candidates for adopting
app isolation.

7.3 Performance
In this section, we evaluate the performance overhead of

app isolation due to entry-point restriction and state isolation.
While extra disk space is required for isolated caches, the
overhead is generally far less than using multiple browsers.

7.3.1 Navigation Latency
In an entry-point restriction enabled browser, every web

resource load for an app is preceded by an entry-point check.
This check determines whether the URL of the web resource
matches one of the known entry-points. Entry-point lookup
can be made efficient using a hash table, imposing negligible
cost on navigation latency. We measured the load times of
the Alexa Top 100 Web sites with and without entry-point
restriction enabled. For an artificially high list of 10000 entry
points, the overhead incurred from hash table lookups was
small enough to be lost in the noise (less than 0.1 ms per
page load).

Besides entry-point lookup, policy files must also be fetched.
The fetch of the policy file is done only once at app installa-
tion time, and thus we do not include it in the performance
overhead.

7.3.2 Storage and Memory Overhead
To see the impact of state isolation, we measured the

disk and memory space required for visiting 12 popular sites
in their own tabs, similar to the sites used in Figure 4.
Chromium stores a user’s persistent state in a configurable
profile directory, so we compared three conditions: all sites
in a single Chromium profile, all in a single Chromium profile
as isolated apps, and each in a separate Chromium profile.
For sites that did not require HTTPS, we used pre-recorded
network data to reduce variability. For Gmail, Bank of
America, and Chase Bank, we logged into an account. We
report the average of three trials.

Visiting all sites in a single profile required 19 MB of disk
space. Using isolated apps required 86 MB, while multiple
browsers required 117 MB. Each of these profiles includes
a partial download of Chromium’s Safe Browsing database
(2.6 MB), which is a source of overhead for each additional
browser profile.

We were surprised that isolated apps required over 4 times
the space of a single profile. This is because Chromium
aggressively allocates disk space for each cache. This behavior
could be modified to be less aggressive for isolated apps.
Users could also opt for an in-memory cache for isolated
apps, which retains the security benefits and lowers the disk
space required to 9.6 MB.

The total resident memory required for visiting all sites
in separate tabs of a single profile was 729 MB.1 We found
that using isolated apps used a comparable 730 MB, while
using a separate browser for each site used an aggregate of
1.83 GB memory.

These results show that by using isolated apps rather than
multiple browsers, we can reduce the performance trade-off
required for our security benefits.

8. CONCLUSION
We have shown that a single browser can achieve the

security benefits of using multiple browsers, by implementing
entry-point restriction and state isolation to isolate sensitive
apps. These mechanisms might not be appropriate for every
web site, but they can be effective for many high-value web
sites, such as online banks. Using this approach, these high-
value web sites can help protect themselves and their users
from a broad spectrum of attacks with minimal effort.
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